Hodge Dual - Hodge Star On Manifolds

Hodge Star On Manifolds

One can repeat the construction above for each cotangent space of an n-dimensional oriented Riemannian or pseudo-Riemannian manifold, and get the Hodge dual (nk)-form, of a k-form. The Hodge star then induces an L2-norm inner product on the differential forms on the manifold. One writes

for the inner product of sections and of . (The set of sections is frequently denoted as . Elements of are called exterior k-forms).

More generally, in the non-oriented case, one can define the hodge star of a k-form as a (nk)-pseudo differential form; that is, a differential forms with values in the canonical line bundle.

Read more about this topic:  Hodge Dual

Famous quotes containing the word star:

    Firmness yclept in heroes, kings and seamen,
    That is, when they succeed; but greatly blamed
    As obstinacy, both in men and women,
    Whene’er their triumph pales, or star is tamed —
    And ‘twill perplex the casuist in morality
    To fix the due bounds of this dangerous quality.
    George Gordon Noel Byron (1788–1824)