History of The Earth - Solar System Formation

Solar System Formation

Main article: Formation and evolution of the Solar System See also: Planetary differentiation

The standard model for the formation of the Solar System (including the Earth) is the solar nebula hypothesis. In this model, the Solar system formed from a large, rotating cloud of interstellar dust and gas called the solar nebula. It was composed of hydrogen and helium created shortly after the Big Bang 13.7 Ga (billion years ago) and heavier elements ejected by supernovae. About 4.5 Ga, the nebula began a contraction that may have been triggered by the shock wave of a nearby supernova. A shock wave would have also made the nebula rotate. As the cloud began to accelerate, its angular momentum, gravity and inertia flattened it into a protoplanetary disk perpendicular to its axis of rotation. Small perturbations due to collisions and the angular momentum of other large debris created the means by which kilometer-sized protoplanets began to form, orbiting the nebular center.

The center of the nebula, not having much angular momentum, collapsed rapidly, the compression heating it until nuclear fusion of hydrogen into helium began. After more contraction, a T Tauri star ignited and evolved into the Sun. Meanwhile, in the outer part of the nebula gravity caused matter to condense around density perturbations and dust particles, and the rest of the protoplanetary disk began separating into rings. In a process known as runaway accretion, successively larger fragments of dust and debris clumped together to form planets. Earth formed in this manner about 4.54 billion years ago (with an uncertainty of 1%) and was largely completed within 10–20 million years. The solar wind of the newly formed T Tauri star cleared out most of the material in the disk that had not already condensed into larger bodies. The same process is expected to produce accretion disks around virtually all newly forming stars in the universe, some of which yield planets.

The proto-Earth grew by accretion until its interior was hot enough to melt the heavy, siderophile metals. Having higher densities than the silicates, these metals sank. This so-called iron catastrophe resulted in the separation of a primitive mantle and a (metallic) core only 10 million years after the Earth began to form, producing the layered structure of Earth and setting up the formation of Earth's magnetic field. J. A. Jacobs was the first to suggest that the inner core—a solid center distinct from the liquid outer core—is freezing and growing out of the liquid outer core due to the gradual cooling of Earth's interior (about 100 degrees Celsius per billion years). Extrapolations on these observations estimate that the inner core formed approximately 2-4 billion years ago, from what was previously an entirely molten core. If true, this would mean that the Earth's inner core is not a primordial feature inherited during the planet's formation, since it would be younger than the age of Earth (about 4.5 billion years).

Earth's first atmosphere, captured from the solar nebula, was composed of light (atmophile) elements from the solar nebula, mostly hydrogen and helium. A combination of the solar wind and Earth's heat would have driven off this atmosphere, as a result of which the atmosphere is now depleted in these elements compared to cosmic abundances.

Read more about this topic:  History Of The Earth

Famous quotes containing the words solar system, solar, system and/or formation:

    Our civilization has decided ... that determining the guilt or innocence of men is a thing too important to be trusted to trained men.... When it wants a library catalogued, or the solar system discovered, or any trifle of that kind, it uses up its specialists. But when it wishes anything done which is really serious, it collects twelve of the ordinary men standing round. The same thing was done, if I remember right, by the Founder of Christianity.
    Gilbert Keith Chesterton (1874–1936)

    The solar system has no anxiety about its reputation, and the credit of truth and honesty is as safe; nor have I any fear that a skeptical bias can be given by leaning hard on the sides of fate, of practical power, or of trade, which the doctrine of Faith cannot down-weigh.
    Ralph Waldo Emerson (1803–1882)

    A religion so cheerless, a philosophy so sorrowful, could never have succeeded with the masses of mankind if presented only as a system of metaphysics. Buddhism owed its success to its catholic spirit and its beautiful morality.
    W. Winwood Reade (1838–1875)

    Out of my discomforts, which were small enough, grew one thing for which I have all my life been grateful—the formation of fixed habits of work.
    Elizabeth Stuart Phelps (1844–1911)