History of Structural Engineering - Early Structural Engineering Developments

Early Structural Engineering Developments

The recorded history of structural engineering starts with the ancient Egyptians. In the 27th century BC, Imhotep was the first structural engineer known by name and constructed the first known step pyramid in Egypt. In the 26th century BC, the Great Pyramid of Giza was constructed in Egypt. It remained the largest man-made structure for millennia and was considered an unsurpassed feat in architecture until the 19th century AD.

The understanding of the physical laws that underpin structural engineering in the Western world dates back to the 3rd century BC, when Archimedes published his work On the Equilibrium of Planes in two volumes, in which he sets out the Law of the Lever, stating:

Equal weights at equal distances are in equilibrium, and equal weights at unequal distances are not in equilibrium but incline towards the weight which is at the greater distance.

Archimedes used the principles derived to calculate the areas and centers of gravity of various geometric figures including triangles, paraboloids, and hemispheres. Archimedes's work on this and his work on calculus and geometry, together with Euclidean geometry, underpin much of the mathematics and understanding of structures in modern structural engineering.

The ancient Romans made great bounds in structural engineering, pioneering large structures in masonry and concrete, many of which are still standing today. They include aqueducts, thermae, columns, lighthouses, defensive walls and harbours. Their methods are recorded by Vitruvius in his De Architectura written in 25 BC, a manual of civil and structural engineering with extensive sections on materials and machines used in construction. One reason for their success is their accurate surveying techniques based on the dioptra, groma and chorobates.

Centuries later, in the 15th and 16th centuries and despite lacking beam theory and calculus, Leonardo da Vinci produced many engineering designs based on scientific observations and rigour, including a design for a bridge to span the Golden Horn. Though dismissed at the time, the design has since been judged to be both feasible and structurally valid

The foundations of modern structural engineering were laid in the 17th century by Galileo Galilei, Robert Hooke and Isaac Newton with the publication of three great scientific works. In 1638 Galileo published Dialogues Relating to Two New Sciences, outlining the sciences of the strength of materials and the motion of objects (essentially defining gravity as a force giving rise to a constant acceleration). It was the first establishment of a scientific approach to structural engineering, including the first attempts to develop a theory for beams. This is also regarded as the beginning of structural analysis, the mathematical representation and design of building structures.

This was followed in 1676 by Robert Hooke's first statement of Hooke's Law, providing a scientific understanding of elasticity of materials and their behaviour under load.

Eleven years later, in 1687, Sir Isaac Newton published Philosophiae Naturalis Principia Mathematica, setting out his Laws of Motion, providing for the first time an understanding of the fundamental laws governing structures.

Also in the 17th century, Sir Isaac Newton and Gottfried Leibniz both independently developed the Fundamental theorem of calculus, providing one of the most important mathematical tools in engineering.

Further advances in the mathematics needed to allow structural engineers to apply the understanding of structures gained through the work of Galileo, Hooke and Newton during the 17th century came in the 18th century when Leonhard Euler pioneered much of the mathematics and many of the methods which allow structural engineers to model and analyse structures. Specifically, he developed the Euler-Bernoulli beam equation with Daniel Bernoulli (1700–1782) circa 1750 - the fundamental theory underlying most structural engineering design.

Daniel Bernoulli, with Johann (Jean) Bernoulli (1667–1748), is also credited with formulating the theory of virtual work, providing a tool using equilibrium of forces and compatibility of geometry to solve structural problems. In 1717 Jean Bernoulli wrote to Pierre Varignon explaining the principle of virtual work, while in 1726 Daniel Bernoulli wrote of the "composition of forces".

In 1757 Leonhard Euler went on to derive the Euler buckling formula, greatly advancing the ability of engineers to design compression elements.

Read more about this topic:  History Of Structural Engineering

Famous quotes containing the words early, structural, engineering and/or developments:

    The girl must early be impressed with the idea that she is to be “a hand, not a mouth”; a worker, and not a drone, in the great hive of human activity. Like the boy, she must be taught to look forward to a life of self-dependence, and early prepare herself for some trade or profession.
    Elizabeth Cady Stanton (1815–1902)

    The reader uses his eyes as well as or instead of his ears and is in every way encouraged to take a more abstract view of the language he sees. The written or printed sentence lends itself to structural analysis as the spoken does not because the reader’s eye can play back and forth over the words, giving him time to divide the sentence into visually appreciated parts and to reflect on the grammatical function.
    J. David Bolter (b. 1951)

    Mining today is an affair of mathematics, of finance, of the latest in engineering skill. Cautious men behind polished desks in San Francisco figure out in advance the amount of metal to a cubic yard, the number of yards washed a day, the cost of each operation. They have no need of grubstakes.
    Merle Colby, U.S. public relief program (1935-1943)

    The developments in the North were those loosely embraced in the term modernization and included urbanization, industrialization, and mechanization. While those changes went forward apace, the antebellum South changed comparatively little, clinging to its rural, agricultural, labor-intensive economy and its traditional folk culture.
    C. Vann Woodward (b. 1908)