# History of Statistics - Introduction

Introduction

By the 18th century, the term "statistics" designated the systematic collection of demographic and economic data by states. In the early 19th century, the meaning of "statistics" broadened to include the discipline concerned with the collection, summary, and analysis of data. Today statistics is widely employed in government, business, and all the sciences. Electronic computers have expedited statistical computation, and have allowed statisticians to develop "computer-intensive" methods.

The term "mathematical statistics" designates the mathematical theories of probability and statistical inference, which are used in statistical practice. The relation between statistics and probability theory developed rather late, however. In the 19th century, statistics increasingly used probability theory, whose initial results were found in the 17th and 18th centuries, particularly in the analysis of games of chance (gambling). By 1800, astronomy used probability models and statistical theories, particularly the method of least squares, which was invented by Legendre and Gauss. Early probability theory and statistics was systematized and extended by Laplace; following Laplace, probability and statistics have been in continual development. In the 19th century, statistical reasoning and probability models were used by social scientists to advance the new sciences of experimental psychology and sociology, and by physical scientists in thermodynamics and statistical mechanics. The development of statistical reasoning was closely associated with the development of inductive logic and the scientific method.

Statistics can be regarded as not a field of mathematics but an autonomous mathematical science, like computer science and operations research. Unlike mathematics, statistics had its origins in public administration. It is used in demography and economics. With its emphasis on learning from data and making best predictions, statistics has a considerable overlap with decision science and microeconomics. With its concerns with data, statistics has overlap with information science and computer science.