History of Radar - Netherlands

Netherlands

Early radio-based detection in the Netherlands were along two independent lines: one a microwaves system at the firm Philips and the other a VHF system at a laboratory of the Armed Forces.

The Philips Company in Eindhoven, Netherlands, operated Natuurkundig Laboratorium (NatLab) for fundamental research related to its products. NatLab researcher Klass Posthumus developed a magnetron split into four elements. In developing a communication system using this magnetron, C.H.J.A. Stall was testing the transmission by using parabolic transmitting and receiving antennas set side-by-side, both aimed at a large plate some distance away. To overcome frequency instability of the magnetron, pulse modulation was used. It was found that the plate reflected a strong signal.

Recognizing the potential importance of this as a detection device, NatLab arranged a demonstration for the Koninklijke Marine (Royal Netherlands Navy). This was conducted in 1937 across the entrance to the main naval port at Marsdiep. Reflections from sea waves obscured the return from the target ship, but the Navy was sufficiently impressed to initiate sponsorship of the research. In 1939, an improved set was demonstrated at Wijk aan Zee, detecting a vessel at a distance of 3.2 km (2.0 mi).

A prototype system was built by Philips, and plans were started by the firm Nederlandse Seintoestellen Fabriek (a Philips subsidiary) for building a chain of warning stations to protect the primary ports. Some field testing of the prototype was conducted, but the project was discontinued when Germany invaded the Netherlands on May 10, 1940. Within the NatLab, however, the work was continued in great secrecy until 1942.

During the early 1930s, there were widespread rumours of a “death ray” being developed. The Dutch Parliament set up a Committee for the Applications of Physics in Weaponry under G.J. Elias to examine this potential, but the Committee quickly discounted death rays. The Committee did, however, establish the Laboratorium voor Fysieke Ontwikkeling (LFO, Laboratory for Physical Development), dedicated to supporting the Netherlands Armed Forces.

Operating in great secrecy, the LFO opened a facility called the Meetgebouw (Measurements Building) located on the Plain of Waalsdorp. In 1934, J.L.W.C. von Weiler joined the LFO and, with S.G. Gratama, began research on a 1.25-m (240-MHz) communication system to be used in artillery spotting.

In 1937, while tests were being conducted on this system, a passing flock of birds disturbed the signal. Realizing that this might be a potential method for detecting aircraft, the Minister of War ordered continuation of the experiments. Weiler and Gratama set about developing a system for directing searchlights and aiming anti-aircraft guns.

The experimental “electrical listening device” operated at 70 cm (430 MHz) and used pulsed transmission at an RPF of 10 kHz. A transmit-receive blocking circuit was developed to allow a common antenna. The received signal was displayed on a CR tube with a circular time base. This set was demonstrated to the Army in April 1938 and detected an aircraft at a range of 18 km (11 mi). The set was rejected, however, because it could not withstand the harsh environment of Army combat conditions.

The Navy was more receptive. Funding was provided for final development, and Max Staal was added to the team. To maintain secrecy, they divided the development into parts. The transmitter was built at the Delft Technical College and the receiver at the University of Leiden. Ten sets would be assembled under the personal supervision of J.J.A. Schagen van Leeuwen, head of the firm Hazemeijer Fabriek van Signaalapparaten.

The prototype had a peak-power of 1 kW, and used a pulse length of 2 to 3 μs with a 10- to 20 kHz PRF. The receiver was a super-heterodyne type using Acorn tubes and a 6 MHz IF stage. The antenna consisted of 4 rows of 16 half-wave dipoles backed by a 3- by 3-meter mesh screen. The operator used a bicycle-type drive to rotate the antenna, and the elevation could be changed using a hand crank.

Several sets were completed, and one was put into operation on the Malievelt in The Hague just before the Netherlands fell to Germany in May 1940. The set worked well, spotting enemy aircraft during the first days of fighting. To prevent capture, operating units and plans for the system were destroyed. Von Weiler and Max Staal fled to England aboard one of the last ships able to leave, carrying two disassembled sets with them. Later, Gratama and van Leeuwen also escaped to England.

Read more about this topic:  History Of Radar

Famous quotes containing the word netherlands:

    Greece is a sort of American vassal; the Netherlands is the country of American bases that grow like tulip bulbs; Cuba is the main sugar plantation of the American monopolies; Turkey is prepared to kow-tow before any United States pro-consul and Canada is the boring second fiddle in the American symphony.
    Andrei Andreyevich Gromyko (1909–1989)