Properties
Hirzebruch surfaces for n>0 have a special rational curve C on them: The surface is the projective bundle of O(-n) and the curve C is the zero section. This curve has self-intersection number −n, and is the only irreducible curve with negative self intersection number. The only irreducible curves with zero self intersection number are the fibers of the Hirzebruch surface (considered as a fiber bundle over P1). The Picard group is generated by the curve C and one of the fibers, and these generators have intersection matrix
so the bilinear form is two dimensional unimodular, and is even or odd depending on whether n is even or odd.
The Hirzebruch surface Σn (n > 1) blown up at a point on the special curve C is isomorphic to Σn-1 blown up at a point not on the special curve.
Read more about this topic: Hirzebruch Surface
Famous quotes containing the word properties:
“A drop of water has the properties of the sea, but cannot exhibit a storm. There is beauty of a concert, as well as of a flute; strength of a host, as well as of a hero.”
—Ralph Waldo Emerson (18031882)
“The reason why men enter into society, is the preservation of their property; and the end why they choose and authorize a legislative, is, that there may be laws made, and rules set, as guards and fences to the properties of all the members of the society: to limit the power, and moderate the dominion, of every part and member of the society.”
—John Locke (16321704)