In mathematics, specifically commutative algebra, Hilbert's basis theorem states that every ideal in the ring of multivariate polynomials over a Noetherian ring is finitely generated. This can be translated into algebraic geometry as follows: every algebraic set over a field can be described as the set of common roots of finitely many polynomial equations. Hilbert (1890) proved the theorem (for the special case of polynomial rings over a field) in the course of his proof of finite generation of rings of invariants.
Hilbert produced an innovative proof by contradiction using mathematical induction; his method does not give an algorithm to produce the finitely many basis polynomials for a given ideal: it only shows that they must exist. One can determine basis polynomials using the method of Gröbner bases.
Read more about Hilbert's Basis Theorem: Proof, Applications, Mizar System
Famous quotes containing the words basis and/or theorem:
“The terrors of the child are quite reasonable, and add to his loveliness; for his utter ignorance and weakness, and his enchanting indignation on such a small basis of capital compel every bystander to take his part.”
—Ralph Waldo Emerson (18031882)
“To insure the adoration of a theorem for any length of time, faith is not enough, a police force is needed as well.”
—Albert Camus (19131960)