History
The Hilbert transform arose in Hilbert's 1905 work on a problem posed by Riemann concerning analytic functions (Kress (1989); Bitsadze (2001)) which has come to be known as the Riemann–Hilbert problem. Hilbert's work was mainly concerned with the Hilbert transform for functions defined on the circle (Khvedelidze 2001; Hilbert 1953). Some of his earlier work related to the Discrete Hilbert Transform dates back to lectures he gave in Göttingen. The results were later published by Hermann Weyl in his dissertation (Hardy, Littlewood & Polya 1952, §9.1). Schur improved Hilbert's results about the discrete Hilbert transform and extended them to the integral case (Hardy, Littlewood & Polya 1952, §9.2). These results were restricted to the spaces L2 and ℓ2. In 1928, Marcel Riesz proved that the Hilbert transform can be defined for u in Lp(R) for 1 < p < ∞, that the Hilbert transform is a bounded operator on Lp(R) for the same range of p, and that similar results hold for the Hilbert transform on the circle as well as the discrete Hilbert transform (Riesz 1928). The Hilbert transform was a motivating example for Antoni Zygmund and Alberto Calderón during their study of singular integrals (Calderón & Zygmund 1952). Their investigations have played a fundamental role in modern harmonic analysis. Various generalizations of the Hilbert transform, such as the bilinear and trilinear Hilbert transforms are still active areas of research today.
Read more about this topic: Hilbert Transform
Famous quotes containing the word history:
“No cause is left but the most ancient of all, the one, in fact, that from the beginning of our history has determined the very existence of politics, the cause of freedom versus tyranny.”
—Hannah Arendt (19061975)
“All objects, all phases of culture are alive. They have voices. They speak of their history and interrelatedness. And they are all talking at once!”
—Camille Paglia (b. 1947)
“The history of all hitherto existing society is the history of class struggles.”
—Karl Marx (18181883)