Generalizations
In class field theory, one studies the ray class field with respect to a given modulus, which is a formal product of prime ideals (including, possibly, archimedean ones). The ray class field is the maximal abelian extension unramified outside the primes dividing the modulus and satisfying a particular ramification condition at the primes dividing the modulus. The Hilbert class field is then the ray class field with respect to the trivial modulus 1.
The narrow class field is the Hilbert class field with respect to the modulus consisting of all infinite primes. For example, the argument above shows that is the narrow class field of .
Read more about this topic: Hilbert Class Field