Discovery and Properties
The term is named after a German mining engineer and chemist Friedrich Heusler, who studied such an alloy in 1903. It contained two parts copper, one part manganese, and one part tin, that is Cu2MnSn, and has the following properties. Its magnetism varies considerably with heat treatment and composition. It has a room-temperature saturation induction of around 8,000 gauss, which exceeds that of the element nickel (around 6100 gauss) but is smaller than that of iron (around 21500 gauss). For early studies see. In 1934, Bradley and Rogers showed that the room-temperature ferromagnetic phase was a fully ordered structure of the L21 type. This has a primitive cubic lattice of copper atoms with alternate cells body-centered by manganese and aluminium. The lattice parameter is 5.95 Ångströms. The molten alloy has a solidus temperature of about 910 °C. As it is cooled below this temperature, it transforms into disordered, solid, body-centered cubic beta-phase. Below 750 °C, a B2 ordered lattice forms with a primitive cubic copper lattice, which is body-centered by a disordered manganese-aluminium sublattice. Cooling below 610 °C causes further ordering of the manganese and aluminium sub-lattice to the L21 form. In non-stoichiometric alloys, the temperatures of ordering decrease, and the range of anealing temperatures, where the alloy does not form microprecipitates, becomes smaller than for the stoichiometric material.
Oxley found a value of 357 °C for the Curie temperature, below which the alloy becomes ferromagnetic. Neutron diffraction and other techniques have shown that a magnetic moment of around 3.7 Bohr magnetons resides almost solely on the manganese atoms. As these atoms are 4.2 Angstroms apart, the exchange interaction, which aligns the spins, is likely indirect and is mediated through conduction electrons or the aluminium and copper atoms.
Electron microscopy studies demonstrated that thermal antiphase boundaries (APBs) form during cooling through the ordering temperatures, as ordered domains nucleate at different centers within the crystal lattice and are often out of step with each other where they meet. The anti-phase domains grow as the alloy is annealed. There are two types of APBs corresponding to the B2 and L21 types of ordering. APBs also form between dislocations if the alloy is deformed. At the APB the manganese atoms will be closer than in the bulk of the alloy and, for non-stoichiometric alloys with an excess of copper (e.g. Cu2.2MnAl0.8), an antiferromagnetic layer forms on every thermal APB. These antiferromagnetic layers completely supersede the normal magnetic domain structure and stay with the APBs if they are grown by annealing the alloy. This significantly modifies the magnetic properties of the non-stoichiometric alloy relative to the stoichiometric alloy which has a normal domain structure. Presumably this phenomenon is related to the fact that pure manganese is an antiferromagnet although it is not clear why the effect is not observed in the stoichiometric alloy. Similar effects occur at APBs in the ferromagnetic alloy MnAl at its stoichiometric composition.
Another useful Heusler alloy is the class of materials known as ferromagnetic shape memory alloys. These are generally composed of nickel, manganese and gallium and can change their length by up to 10% in a magnetic field.
Read more about this topic: Heusler Alloy
Famous quotes containing the words discovery and, discovery and/or properties:
“The new supplants the old. Yet mens minds are stuffed with outworn bunk. Educating the young in the latest findings of authorities and scholars in the social sciences is important. It is equally important to devise ways and means for aiding the middle-aged and old to reexamine hang-over unscientific doctrines and ideas in the light of recent discovery and research.”
—Mary Barnett Gilson (1877?)
“I have known no experience more distressing than the discovery that Negroes didnt love me. Unutterable loneliness claimed me. I felt without roots, like a man without a country ...”
—Sarah Patton Boyle, U.S. civil rights activist and author. The Desegregated Heart, part 1, ch. 10 (1962)
“The reason why men enter into society, is the preservation of their property; and the end why they choose and authorize a legislative, is, that there may be laws made, and rules set, as guards and fences to the properties of all the members of the society: to limit the power, and moderate the dominion, of every part and member of the society.”
—John Locke (16321704)