Heteroclinic Orbit

In mathematics, in the phase portrait of a dynamical system, a heteroclinic orbit (sometimes called a heteroclinic connection) is a path in phase space which joins two different equilibrium points. If the equilibrium points at the start and end of the orbit are the same, the orbit is a homoclinic orbit.

Consider the continuous dynamical system described by the ODE

Suppose there are equilibria at and, then a solution is a heteroclinic orbit from to if

and

This implies that the orbit is contained in the stable manifold of and the unstable manifold of .

Read more about Heteroclinic Orbit:  Symbolic Dynamics

Famous quotes containing the word orbit:

    “To my thinking” boomed the Professor, begging the question as usual, “the greatest triumph of the human mind was the calculation of Neptune from the observed vagaries of the orbit of Uranus.”
    “And yours,” said the P.B.
    Samuel Beckett (1906–1989)