Derivation/Calculation From The Normal Form
Note: For simplicity, the following derivation discusses the 3D case. However, it is also applicable in 2D.
In the normal form,
a plane is given by a normal vector as well as an arbitrary position vector of a point . The direction of is chosen to satisfy the following inequality
By dividing the normal vector by its Magnitude, we obtain the unit (or normalized) normal vector
and the above equation can be rewritten as
Substituting
we obtain the Hesse normal form
In this diagram, d is the distance from the origin. Because holds for every point in the plane, it is also true at point Q (the point where the vector from the origin meets the plane E), with, per the definition of the Scalar product
The magnitude of is the shortest distance from the origin to the plane.
Read more about this topic: Hesse Normal Form
Famous quotes containing the words calculation, normal and/or form:
“Common sense is the measure of the possible; it is composed of experience and prevision; it is calculation appled to life.”
—Henri-Frédéric Amiel (18211881)
“What strikes many twin researchers now is not how much identical twins are alike, but rather how different they are, given the same genetic makeup....Multiples dont walk around in lockstep, talking in unison, thinking identical thoughts. The bond for normal twins, whether they are identical or fraternal, is based on how they, as individuals who are keenly aware of the differences between them, learn to relate to one another.”
—Pamela Patrick Novotny (20th century)
“Shopping seemed to take an entirely too important place in womens lives. You never saw men milling around in mens departments. They made quick work of it. I used to wonder if shopping was a form of escape for women who had no worthwhile interests.”
—Mary Barnett Gilson (1877?)