Proof Sketch
A proof of the non-trivial direction of the theorem can be constructed according to the following steps:
- If the formula is valid, then by completeness of cut-free sequent calculus, which follows from Gentzen's cut-elimination theorem, there is a cut-free proof of .
- Starting from above downwards, remove the inferences that introduce existential quantifiers.
- Remove contraction-inferences on previously existentially quantified formulas, since the formulas (now with terms substituted for previously quantified variables) might not be identical anymore after the removal of the quantifier inferences.
- The removal of contractions accumulates all the relevant substitution instances of in the right side of the sequent, thus resulting in a proof of, from which the Herbrand disjunction can be obtained.
However, sequent calculus and cut-elimination were not known at the time of Herbrand's theorem, and Herbrand had to prove his theorem in a more complicated way.
Read more about this topic: Herbrand's Theorem
Famous quotes containing the words proof and/or sketch:
“If any doubt has arisen as to me, my country [Virginia] will have my political creed in the form of a Declaration &c. which I was lately directed to draw. This will give decisive proof that my own sentiment concurred with the vote they instructed us to give.”
—Thomas Jefferson (17431826)
“We criticize a man or a book most sharply when we sketch out their ideal.”
—Friedrich Nietzsche (18441900)