Hensel's Lemma - Hensel's Lemma For p-adic Numbers

Hensel's Lemma For p-adic Numbers

In the p-adic numbers, where we can make sense of rational numbers modulo powers of p as long as the denominator is not a multiple of p, the recursion from rk (roots mod pk) to rk+1 (roots mod pk+1) can be expressed in a much more intuitive way. Instead of choosing t to be an(y) integer which solves the congruence, let t be the rational number (the pk here is not really a denominator since f(rk) is divisible by pk). Then set

This fraction may not be an integer, but it is a p-adic integer, and the sequence of numbers rk converges in the p-adic integers to a root of f(x) = 0. Moreover, the displayed recursive formula for the (new) number rk+1 in terms of rk is precisely Newton's method for finding roots to equations in the real numbers.

By working directly in the p-adics and using the p-adic absolute value, there is a version of Hensel's lemma which can be applied even if we start with a solution of f(a) ≡ 0 mod p such that f'(a) ≡ 0 mod p. We just need to make sure the number f'(a) is not exactly 0. This more general version is as follows: if there is an integer a which satisfies |f(a)|p < |f′(a)|p2, then there is a unique p-adic integer b such f(b) = 0 and |b-a|p < |f'(a)|p. The construction of b amounts to showing that the recursion from Newton's method with initial value a converges in the p-adics and we let b be the limit. The uniqueness of b as a root fitting the condition |b-a|p < |f'(a)|p needs additional work.

The statement of Hensel's lemma given above (taking ) is a special case of this more general version, since the conditions that f(a) ≡ 0 mod p and f'(a) ≠ 0 mod p say that |f(a)|p < 1 and |f'(a)|p = 1.

Read more about this topic:  Hensel's Lemma

Famous quotes containing the word numbers:

    I had but three chairs in my house; one for solitude, two for friendship; three for society. When visitors came in larger and unexpected numbers there was but the third chair for them all, but they generally economized the room by standing up.
    Henry David Thoreau (1817–1862)