In number theory, a Heegner number is a square-free positive integer d such that the imaginary quadratic field Q(√−d) has class number 1. Equivalently, its ring of integers has unique factorization.
The determination of such numbers is a special case of the class number problem, and they underlie several striking results in number theory.
According to the Stark–Heegner theorem there are precisely nine Heegner numbers:
- 1, 2, 3, 7, 11, 19, 43, 67, 163.
This result was conjectured by Gauss and proven by Kurt Heegner in 1952.
Read more about Heegner Number: Euler's Prime-generating Polynomial, Almost Integers and Ramanujan's Constant, Other Heegner Numbers, Consecutive Primes
Famous quotes containing the word number:
“In this world, which is so plainly the antechamber of another, there are no happy men. The true division of humanity is between those who live in light and those who live in darkness. Our aim must be to diminish the number of the latter and increase the number of the former. That is why we demand education and knowledge.”
—Victor Hugo (18021885)