A Hecke character is a character of the idele class group of a number field or global function field. It corresponds uniquely to a character of the idele group which is trivial on principal ideles, via composition with the projection map.
This definition depends on the definition of a character, which varies slightly between authors: It may be defined as a homomorphism to the non-zero complex numbers (also called a "quasicharacter"), or as a homomorphism to the unit circle in C ("unitary"). Any quasicharacter (of the idele class group) can be written uniquely as a unitary character times a real power of the norm, so there is no big difference between the two definitions.
The conductor of a Hecke character χ is the largest ideal m such that χ is a Hecke character mod m. Here we say that χ is a Hecke character mod m if χ (considered as a character on the idele group) is trivial on the group of finite ideles whose every v-adic component lies in 1 + mOv.
Read more about Hecke Character: Definition Using Ideals, Relationship Between The Definitions, Special Cases, Examples, Tate's Thesis, Algebraic Hecke Characters
Famous quotes containing the word character:
“PLAIN SUPERFICIALITY is the character of a speech, in which any two points being taken, the speaker is found to lie wholly with regard to those two points.”
—Lewis Carroll [Charles Lutwidge Dodgson] (18321898)