Haven (graph Theory) - Connections To Treewidth, Separators, and Minors

Connections To Treewidth, Separators, and Minors

Havens may be used to characterize the treewidth of graphs: a graph has a haven of order k if and only if it has treewidth at least k − 1. A tree decomposition may be used to describe a winning strategy for the pursuers in the same pursuit-evasion game, so it is also true that a graph has a haven of order k if and only if the evader wins with best play against fewer than k pursuers. In games won by the evader, there is always an optimal strategy in the form described by a haven, and in games won by the pursuer, there is always an optimal strategy in the form described by a tree decomposition. For instance, because the 3 × 3 grid has a haven of order 4, but does not have a haven of order 5, it must have treewidth exactly 3. The same min-max theorem can be generalized to infinite graphs of finite treewidth, with a definition of treewidth in which the underlying tree is required to be rayless (that is, having no ends).

Havens are also closely related to the existence of separators, small sets X of vertices in an n-vertex graph such that every X-flap has at most 2n/3 vertices. If a graph G does not have a k-vertex separator, then every set X of at most k vertices has a (unique) X-flap with more than 2n/3 vertices. In this case, G has a haven of order k + 1, in which β(X) is defined to be this unique large X-flap. That is, every graph has either a small separator or a haven of high order.

If a graph G has a haven of order k, with kh3/2n1/2 for some integer h, then G must also have a complete graph Kh as a minor. In other words, the Hadwiger number of an n-vertex graph with a haven of order k is at least k2/3n−1/3. As a consequence, the Kh-minor-free graphs have treewidth less than h3/2n1/2 and separators of size less than h3/2n1/2. More generally an O(√n) bound on treewidth and separator size holds for any nontrivial family of graphs that can be characterized by forbidden minors, because for any such family there is a constant h such that the family does not include Kh.

Read more about this topic:  Haven (graph Theory)

Famous quotes containing the word connections:

    The conclusion suggested by these arguments might be called the paradox of theorizing. It asserts that if the terms and the general principles of a scientific theory serve their purpose, i. e., if they establish the definite connections among observable phenomena, then they can be dispensed with since any chain of laws and interpretive statements establishing such a connection should then be replaceable by a law which directly links observational antecedents to observational consequents.
    —C.G. (Carl Gustav)