Hausdorff Dimension - Formal Definition

Formal Definition

Let be a metric space. If and, the -dimensional Hausdorff content of is defined by

In other words, is the infimum of the set of numbers such that there is some (indexed) collection of balls covering with for each which satisfies . (Here, we use the standard convention that inf Ø =∞.) The Hausdorff dimension of is defined by

Equivalently, may be defined as the infimum of the set of such that the -dimensional Hausdorff measure of is zero. This is the same as the supremum of the set of such that the -dimensional Hausdorff measure of is infinite (except that when this latter set of numbers is empty the Hausdorff dimension is zero).

Read more about this topic:  Hausdorff Dimension

Famous quotes containing the words formal and/or definition:

    Two clergymen disputing whether ordination would be valid without the imposition of both hands, the more formal one said, “Do you think the Holy Dove could fly down with only one wing?”
    Horace Walpole (1717–1797)

    The physicians say, they are not materialists; but they are:MSpirit is matter reduced to an extreme thinness: O so thin!—But the definition of spiritual should be, that which is its own evidence. What notions do they attach to love! what to religion! One would not willingly pronounce these words in their hearing, and give them the occasion to profane them.
    Ralph Waldo Emerson (1803–1882)