Hausdorff Dimension - Formal Definition

Formal Definition

Let be a metric space. If and, the -dimensional Hausdorff content of is defined by

In other words, is the infimum of the set of numbers such that there is some (indexed) collection of balls covering with for each which satisfies . (Here, we use the standard convention that inf Ø =∞.) The Hausdorff dimension of is defined by

Equivalently, may be defined as the infimum of the set of such that the -dimensional Hausdorff measure of is zero. This is the same as the supremum of the set of such that the -dimensional Hausdorff measure of is infinite (except that when this latter set of numbers is empty the Hausdorff dimension is zero).

Read more about this topic:  Hausdorff Dimension

Famous quotes containing the words formal and/or definition:

    There must be a profound recognition that parents are the first teachers and that education begins before formal schooling and is deeply rooted in the values, traditions, and norms of family and culture.
    Sara Lawrence Lightfoot (20th century)

    ... we all know the wag’s definition of a philanthropist: a man whose charity increases directly as the square of the distance.
    George Eliot [Mary Ann (or Marian)