In mathematics, specifically in axiomatic set theory, a Hartogs number is a particular kind of cardinal number. It was shown by Friedrich Hartogs in 1915, from ZF alone (that is, without using the axiom of choice), that there is a least well-ordered cardinal greater than a given well-ordered cardinal.
To define the Hartogs number of a set it is not in fact necessary that the set be well-orderable: If X is any set, then the Hartogs number of X is the least ordinal α such that there is no injection from α into X. If X cannot be well-ordered, then we can no longer say that this α is the least well-ordered cardinal greater than the cardinality of X, but it remains the least well-ordered cardinal not less than or equal to the cardinality of X. The map taking X to α is sometimes called Hartogs' function.
Read more about Hartogs Number: Proof
Famous quotes containing the word number:
“At thirty years a woman asks her lover to give her back the esteem she has forfeited for his sake; she lives only for him, her thoughts are full of his future, he must have a great career, she bids him make it glorious; she can obey, entreat, command, humble herself, or rise in pride; times without number she brings comfort when a young girl can only make moan.”
—Honoré De Balzac (17991850)