Harmonic Function - Connections With Complex Function Theory

Connections With Complex Function Theory

The real and imaginary part of any holomorphic function yield harmonic functions on R2 (these are said to be a pair of harmonic conjugate functions). Conversely, any harmonic function u on an open subset Ω of R2 is locally the real part of a holomorphic function. This is immediately seen observing that, writing z = x + iy, the complex function g(z) := ux − i uy is holomorphic in Ω because it satisfies the Cauchy–Riemann equations. Therefore, g has locally a primitive f, and u is the real part of f up to a constant, as ux is the real part of .

Although the above correspondence with holomorphic functions only holds for functions of two real variables, still harmonic functions in n variables enjoy a number of properties typical of holomorphic functions. They are (real) analytic; they have a maximum principle and a mean-value principle; a theorem of removal of singularities as well as a Liouville theorem one holds for them in analogy to the corresponding theorems in complex functions theory.

Read more about this topic:  Harmonic Function

Famous quotes containing the words connections, complex, function and/or theory:

    Growing up human is uniquely a matter of social relations rather than biology. What we learn from connections within the family takes the place of instincts that program the behavior of animals; which raises the question, how good are these connections?
    Elizabeth Janeway (b. 1913)

    Uneducated people are unfortunate in that they do grasp complex issues, educated people, on the other hand, often do not understand simplicity, which is a far greater misfortune.
    Franz Grillparzer (1791–1872)

    Any translation which intends to perform a transmitting function cannot transmit anything but information—hence, something inessential. This is the hallmark of bad translations.
    Walter Benjamin (1892–1940)

    There never comes a point where a theory can be said to be true. The most that one can claim for any theory is that it has shared the successes of all its rivals and that it has passed at least one test which they have failed.
    —A.J. (Alfred Jules)