Factorization Into Inner and Outer Functions (Beurling)
For 0 < p ≤ ∞, every non-zero function ƒ in Hp can be written as the product ƒ = Gh where G is an outer function and h is an inner function, as defined below (Rudin 1987, Thm 17.17). This "Beurling factorization" allows the Hardy space to be completely characterized by the spaces of inner and outer functions.
One says that G(z) is an outer (exterior) function if it takes the form
for some complex number c with |c| = 1, and some positive measurable function φ on the unit circle such that log φ is integrable on the circle. In particular, when φ is integrable on the circle, G is in H1 because the above takes the form of the Poisson kernel (Rudin 1987, Thm 17.16). This implies that
for almost every θ.
One says that h(z) is an inner (interior) function if and only if |h(z)| ≤ 1 on the unit disk and the limit
exists for almost all θ and its modulus is equal to 1. In particular, h is in H∞. The inner function can be further factored into a form involving a Blaschke product.
The function f, decomposed as f = Gh, is in Hp if and only if the positive function φ belongs to Lp(T), where φ is the function in the representation of the outer function G.
Let G be an outer function represented as above from a function φ on the circle. Replacing φ by φα, α > 0, a family (Gα) of outer functions is obtained, with the properties:
-
- G1 = G, Gα+β = Gα Gβ and |Gα| = |G|α almost everywhere on the circle.
It follows that whenever 0 < p, q, r < ∞ and 1/r = 1/p + 1/q, every function f in Hr can be expressed as the product of a function in Hp and a function in Hq. For example: every function in H1 is the product of two functions in H2; every function in Hp, p < 1, can be expressed as product of several functions in some Hq, q > 1.
Read more about this topic: Hardy Space
Famous quotes containing the words outer and/or functions:
“When human beings have been fascinated by the contemplation of their own hearts, the more intricate biological pattern of the female has become a model for the artist, the mystic, and the saint. When mankind turns instead to what can be done, altered, built, invented, in the outer world, all natural properties of men, animals, or metals become handicaps to be altered rather than clues to be followed.”
—Margaret Mead (19011978)
“The English masses are lovable: they are kind, decent, tolerant, practical and not stupid. The tragedy is that there are too many of them, and that they are aimless, having outgrown the servile functions for which they were encouraged to multiply. One day these huge crowds will have to seize power because there will be nothing else for them to do, and yet they neither demand power nor are ready to make use of it; they will learn only to be bored in a new way.”
—Cyril Connolly (19031974)