Hardy Space - Factorization Into Inner and Outer Functions (Beurling)

Factorization Into Inner and Outer Functions (Beurling)

For 0 < p ≤ ∞, every non-zero function ƒ in Hp can be written as the product ƒ = Gh where G is an outer function and h is an inner function, as defined below (Rudin 1987, Thm 17.17). This "Beurling factorization" allows the Hardy space to be completely characterized by the spaces of inner and outer functions.

One says that G(z) is an outer (exterior) function if it takes the form

G(z) = c \, \exp\left[\frac{1}{2\pi} \int_{-\pi}^{\pi}
\frac{\mathrm{e}^{i\theta}+z}{\mathrm{e}^{i\theta}-z} \log \varphi(\mathrm{e}^{i\theta}) \, \mathrm{d}\theta \right]

for some complex number c with |c| = 1, and some positive measurable function φ on the unit circle such that log φ is integrable on the circle. In particular, when φ is integrable on the circle, G is in H1 because the above takes the form of the Poisson kernel (Rudin 1987, Thm 17.16). This implies that

for almost every θ.

One says that h(z) is an inner (interior) function if and only if |h(z)| ≤ 1 on the unit disk and the limit

exists for almost all θ and its modulus is equal to 1. In particular, h is in H∞. The inner function can be further factored into a form involving a Blaschke product.

The function f, decomposed as f = Gh, is in Hp if and only if the positive function φ belongs to Lp(T), where φ is the function in the representation of the outer function G.

Let G be an outer function represented as above from a function φ on the circle. Replacing φ by φα, α > 0, a family (Gα) of outer functions is obtained, with the properties:

G1 = G, Gα+β = Gα Gβ and |Gα| = |G|α almost everywhere on the circle.

It follows that whenever 0 < p, q, r < ∞ and 1/r = 1/p + 1/q, every function f in Hr can be expressed as the product of a function in Hp and a function in Hq. For example: every function in H1 is the product of two functions in H2; every function in Hp, p < 1, can be expressed as product of several functions in some Hq, q > 1.

Read more about this topic:  Hardy Space

Famous quotes containing the words outer and/or functions:

    The Dada object reflected an ironic posture before the consecrated forms of art. The surrealist object differs significantly in this respect. It stands for a mysterious relationship with the outer world established by man’s sensibility in a way that involves concrete forms in projecting the artist’s inner model.
    —J.H. Matthews. “Object Lessons,” The Imagery of Surrealism, Syracuse University Press (1977)

    Let us stop being afraid. Of our own thoughts, our own minds. Of madness, our own or others’. Stop being afraid of the mind itself, its astonishing functions and fandangos, its complications and simplifications, the wonderful operation of its machinery—more wonderful because it is not machinery at all or predictable.
    Kate Millett (b. 1934)