Hamiltonian Path Problem - Algorithms

Algorithms

There are n! different sequences of vertices that might be Hamiltonian paths in a given n-vertex graph (and are, in a complete graph), so a brute force search algorithm that tests all possible sequences would be very slow. There are several faster approaches. A search procedure by Frank Rubin divides the edges of the graph into three classes: those that must be in the path, those that cannot be in the path, and undecided. As the search proceeds, a set of decision rules classifies the undecided edges, and determines whether to halt or continue the search. The algorithm divides the graph into components that can be solved separately. Also, a dynamic programming algorithm of Bellman, Held, and Karp can be used to solve the problem in time O(n2 2n). In this method, one determines, for each set S of vertices and each vertex v in S, whether there is a path that covers exactly the vertices in S and ends at v. For each choice of S and v, a path exists for (S,v) if and only if v has a neighbor w such that a path exists for (Sv,w), which can be looked up from already-computed information in the dynamic program.

Andreas Björklund provided an alternative approach using the inclusion–exclusion principle to reduce the problem of counting the number of Hamiltonian cycles to a simpler counting problem, of counting cycle covers, which can be solved by computing certain matrix determinants. Using this method, he showed how to solve the Hamiltonian cycle problem in arbitrary n-vertex graphs by a Monte Carlo algorithm in time O(1.657n); for bipartite graphs this algorithm can be further improved to time O(1.414n).

For graphs of maximum degree three, a careful backtracking search can find a Hamiltonian cycle (if one exists) in time O(1.251n).

Because of the difficulty of solving the Hamiltonian path and cycle problems on conventional computers, they have also been studied in unconventional models of computing. For instance, Leonard Adleman showed that the Hamiltonian path problem may be solved using a DNA computer. Exploiting the parallelism inherent in chemical reactions, the problem may be solved using a number of chemical reaction steps linear in the number of vertices of the graph; however, it requires a factorial number of distinct types of DNA molecule to participate in the reaction.

Read more about this topic:  Hamiltonian Path Problem