Irrotational Barotropic Flow
Take the simple example of a barotropic, inviscid vorticity-free fluid.
Then, the conjugate fields are the mass density field ρ and the velocity potential φ. The Poisson bracket is given by
and the Hamiltonian by:
where e is the internal energy density, as a function of ρ. For this barotropic flow, the internal energy is related to the pressure p by:
where an apostrophe ('), denotes differentiation with respect to ρ.
This Hamiltonian structure gives rise to the following two equations of motion:
where is the velocity and is vorticity-free. The second equation leads to the Euler equations:
after exploiting the fact that the vorticity is zero:
Read more about this topic: Hamiltonian Fluid Mechanics
Famous quotes containing the word flow:
“On the idle hill of summer,
Sleepy with the flow of streams,”
—A.E. (Alfred Edward)