Hadwiger Conjecture (graph Theory) - Generalizations

Generalizations

György Hajós conjectured that Hadwiger's conjecture could be strengthened to subdivisions rather than minors: that is, that every graph with chromatic number k contains a subdivision of a complete graph Kk. Hajós' conjecture is true for k ≤ 4, but Catlin (1979) found counterexamples to this strengthened conjecture for k ≥ 7; the cases k = 5 and k = 6 remain open. Erdős & Fajtlowicz (1981) observed that Hajós' conjecture fails badly for random graphs: for any ε > 0, in the limit as the number of vertices, n, goes to infinity, the probability approaches one that a random n-vertex graph has chromatic number ≥ (1/2 − ε)n / log2 n, and that its largest clique subdivision has at most cn1/2 vertices for some constant c. In this context it is worth noting that the probability also approaches one that a random n-vertex graph has Hadwiger number greater than or equal to its chromatic number, so the Hadwiger conjecture holds for random graphs with high probability; more precisely, the Hadwiger number is with high probability a constant times n/√log n.

Borowiecki (1993) asked whether Hadwiger's conjecture could be extended to list coloring. For k ≤ 4, every graph with list chromatic number k has a k-vertex clique minor. However, the maximum list chromatic number of planar graphs is 5, not 4, so the extension fails already for K5-minor-free graphs. More generally, for every t ≥ 1, there exist graphs whose Hadwiger number is 3t + 1 and whose list chromatic number is 4t + 1.

Gerards and Seymour conjectured that every graph G with chromatic number k has a complete graph Kk as an odd minor. Such a structure can be represented as a family of k vertex-disjoint subtrees of G, each of which is two-colored, such that each pair of subtrees is connected by a monochromatic edge. Although graphs with no odd Kk minor are not necessarily sparse, a similar upper bound holds for them as it does for the standard Hadwiger conjecture: a graph with no odd Kk minor has chromatic number χ(G) = O(k √log k).

By imposing more conditions on G than the number of colors it needs, it may be possible to prove the existence of larger minors than Kk. One example of this is the snark theorem, that every cubic graph requiring four colors in any edge coloring has the Petersen graph as a minor, conjectured by W. T. Tutte and announced to be proved in 2001 by Robertson, Sanders, Seymour, and Thomas.

Read more about this topic:  Hadwiger Conjecture (graph Theory)