Properties
It follows from the definition that a Hadamard matrix H of order n satisfies
where In is the n × n identity matrix and HT is the transpose of H. Consequently the determinant of H equals ±nn/2.
Suppose that M is a complex matrix of order n, whose entries are bounded by |Mij| ≤1, for each i, j between 1 and n. Then Hadamard's determinant bound states that
Equality in this bound is attained for a real matrix M if and only if M is a Hadamard matrix.
The order of a Hadamard matrix must be 1, 2, or a multiple of 4.
Read more about this topic: Hadamard Matrix
Famous quotes containing the word properties:
“The reason why men enter into society, is the preservation of their property; and the end why they choose and authorize a legislative, is, that there may be laws made, and rules set, as guards and fences to the properties of all the members of the society: to limit the power, and moderate the dominion, of every part and member of the society.”
—John Locke (16321704)
“A drop of water has the properties of the sea, but cannot exhibit a storm. There is beauty of a concert, as well as of a flute; strength of a host, as well as of a hero.”
—Ralph Waldo Emerson (18031882)