Properties
It follows from the definition that a Hadamard matrix H of order n satisfies
where In is the n × n identity matrix and HT is the transpose of H. Consequently the determinant of H equals ±nn/2.
Suppose that M is a complex matrix of order n, whose entries are bounded by |Mij| ≤1, for each i, j between 1 and n. Then Hadamard's determinant bound states that
Equality in this bound is attained for a real matrix M if and only if M is a Hadamard matrix.
The order of a Hadamard matrix must be 1, 2, or a multiple of 4.
Read more about this topic: Hadamard Matrix
Famous quotes containing the word properties:
“A drop of water has the properties of the sea, but cannot exhibit a storm. There is beauty of a concert, as well as of a flute; strength of a host, as well as of a hero.”
—Ralph Waldo Emerson (18031882)
“The reason why men enter into society, is the preservation of their property; and the end why they choose and authorize a legislative, is, that there may be laws made, and rules set, as guards and fences to the properties of all the members of the society: to limit the power, and moderate the dominion, of every part and member of the society.”
—John Locke (16321704)