Gyromagnetic Ratio For A Classical Rotating Body
Consider a charged body rotating about an axis of symmetry. According to the laws of classical physics, it has both a magnetic dipole moment and an angular momentum due to its rotation. It can be shown that as long as its charge and mass are distributed identically (e.g., both distributed uniformly), its gyromagnetic ratio is
where q is its charge and m is its mass. The derivation of this relation is as follows:
It suffices to demonstrate this for an infinitesimally narrow circular ring within the body, as the general result follows from an integration. Suppose the ring has radius r, area A = πr2, mass m, charge q, and angular momentum L=mvr. Then the magnitude of the magnetic dipole moment is
as desired.
Read more about this topic: Gyromagnetic Ratio
Famous quotes containing the words ratio, classical and/or body:
“A magazine or a newspaper is a shop. Each is an experiment and represents a new focus, a new ratio between commerce and intellect.”
—John Jay Chapman (18621933)
“Culture is a sham if it is only a sort of Gothic front put on an iron buildinglike Tower Bridgeor a classical front put on a steel framelike the Daily Telegraph building in Fleet Street. Culture, if it is to be a real thing and a holy thing, must be the product of what we actually do for a livingnot something added, like sugar on a pill.”
—Eric Gill (18821940)
“I would rather have as my patron a host of anonymous citizens digging into their own pockets for the price of a book or a magazine than a small body of enlightened and responsible men administering public funds. I would rather chance my personal vision of truth striking home here and there in the chaos of publication that exists than attempt to filter it through a few sets of official, honorably public-spirited scruples.”
—John Updike (b. 1932)