Grover's Algorithm - Extension To Space With Multiple Targets

Extension To Space With Multiple Targets

If, instead of 1 matching entry, there are k matching entries, the same algorithm works but the number of iterations must be π(N/k)1/2/4 instead of πN1/2/4. There are several ways to handle the case if k is unknown. For example, one could run Grover's algorithm several times, with

 \pi \frac{N^{1/2}}{4}, \pi \frac{(N/2)^{1/2}}{4},
\pi \frac{(N/4)^{1/2}}{4}, \ldots

iterations. For any k, one of iterations will find a matching entry with a sufficiently high probability. The total number of iterations is at most

which is still O(N1/2). It can be shown that this could be improved. If the number of marked items is k, where k is unknown, there is an algorithm that finds the solution in queries. This fact is used in order to solve the collision problem.

Read more about this topic:  Grover's Algorithm

Famous quotes containing the words extension, space and/or multiple:

    We are now a nation of people in daily contact with strangers. Thanks to mass transportation, school administrators and teachers often live many miles from the neighborhood schoolhouse. They are no longer in daily informal contact with parents, ministers, and other institution leaders . . . [and are] no longer a natural extension of parental authority.
    James P. Comer (20th century)

    Why not a space flower? Why do we always expect metal ships?
    W.D. Richter (b. 1945)

    ... the generation of the 20’s was truly secular in that it still knew its theology and its varieties of religious experience. We are post-secular, inventing new faiths, without any sense of organizing truths. The truths we accept are so multiple that honesty becomes little more than a strategy by which you manage your tendencies toward duplicity.
    Ann Douglas (b. 1942)