Group With Operators - Category-theoretic Remarks

Category-theoretic Remarks

In category theory, a group with operators can be defined as an object of a functor category GrpM where M is a monoid (i.e., a category with one object) and Grp denotes the category of groups. This definition is equivalent to the previous one, provided is a monoid (otherwise we may expand it to include the identity and all compositions).

A morphism in this category is a natural transformation between two functors (i.e. two groups with operators sharing same operator domain M). Again we recover the definition above of a homomorphism of groups with operators (with f the component of the natural transformation).

A group with operators is also a mapping

where is the set of group endomorphisms of G.

Read more about this topic:  Group With Operators

Famous quotes containing the word remarks:

    I thought my razor was dull until I heard his speech and that reminds me of a story that’s so dirty I’m ashamed to think of it myself.
    S.J. Perelman, U.S. screenwriter, Bert Kalmar, Harry Ruby, and Norman Z. McLeod. Groucho Marx, Horsefeathers, as a newly-appointed college president commenting on the remarks of Huxley College’s outgoing president (1932)