Group (mathematics) - Groups With Additional Structure

Groups With Additional Structure

Many groups are simultaneously groups and examples of other mathematical structures. In the language of category theory, they are group objects in a category, meaning that they are objects (that is, examples of another mathematical structure) which come with transformations (called morphisms) that mimic the group axioms. For example, every group (as defined above) is also a set, so a group is a group object in the category of sets.

Read more about this topic:  Group (mathematics)

Famous quotes containing the words groups, additional and/or structure:

    Instead of seeing society as a collection of clearly defined “interest groups,” society must be reconceptualized as a complex network of groups of interacting individuals whose membership and communication patterns are seldom confined to one such group alone.
    Diana Crane (b. 1933)

    The mere existence of an additional child or children in the family could signify Less. Less time alone with parents. Less attention for hurts and disappointments. Less approval for accomplishments. . . . No wonder children struggle so fiercely to be first or best. No wonder they mobilize all their energy to have more or most. Or better still, all.
    Adele Faber (20th century)

    Why does philosophy use concepts and why does faith use symbols if both try to express the same ultimate? The answer, of course, is that the relation to the ultimate is not the same in each case. The philosophical relation is in principle a detached description of the basic structure in which the ultimate manifests itself. The relation of faith is in principle an involved expression of concern about the meaning of the ultimate for the faithful.
    Paul Tillich (1886–1965)