Group Cohomology - Non-abelian Group Cohomology

Non-abelian Group Cohomology

Using the G-invariants and the 1-cochains, one can construct the zeroth and first group cohomology for a group G with coefficients in a non-abelian group. Specifically, a G-group is a (not necessarily abelian) group A together with an action by G.

The zeroth cohomology of G with coefficients in A is defined to be the subgroup

of elements of A fixed by G.

The first cohomology of G with coefficients in A is defined as 1-cocycles modulo an equivalence relation instead of by 1-coboundaries. The condition for a map φ to be a 1-cocycle is that and if there is an a in A such that . In general, is not a group when A is non-abelian. It instead has the structure of a pointed set – exactly the same situation arises in the 0th homotopy group, which for a general topological space is not a group but a pointed set. Note that a group is in particular a pointed set, with the identity element as distinguished point.

Using explicit calculations, one still obtains a truncated long exact sequence in cohomology. Specifically, let

be a short exact sequence of G-groups, then there is an exact sequence of pointed sets

Read more about this topic:  Group Cohomology

Famous quotes containing the word group:

    It’s important to remember that feminism is no longer a group of organizations or leaders. It’s the expectations that parents have for their daughters, and their sons, too. It’s the way we talk about and treat one another. It’s who makes the money and who makes the compromises and who makes the dinner. It’s a state of mind. It’s the way we live now.
    Anna Quindlen (20th century)