Group Cohomology - Formal Constructions

Formal Constructions

In this article, G is a finite group. The collection of all G-modules is a category (the morphisms are group homomorphisms f with the property f(gx) = g(f(x)) for all g in G and x in M). This category of G-modules is an abelian category with enough injectives (since it is isomorphic to the category of all modules over the group ring ℤ).

Sending each module M to the group of invariants MG yields a functor from this category to the category of abelian groups. This functor is left exact but not necessarily right exact. We may therefore form its right derived functors; their values are abelian groups and they are denoted by Hn(G,M), "the n-th cohomology group of G with coefficients in M". H0(G,M) is identified with MG.

Read more about this topic:  Group Cohomology

Famous quotes containing the word formal:

    This is no argument against teaching manners to the young. On the contrary, it is a fine old tradition that ought to be resurrected from its current mothballs and put to work...In fact, children are much more comfortable when they know the guide rules for handling the social amenities. It’s no more fun for a child to be introduced to a strange adult and have no idea what to say or do than it is for a grownup to go to a formal dinner and have no idea what fork to use.
    Leontine Young (20th century)