Universal Property
In its simplest form, the Grothendieck group of a commutative monoid is the universal way of making that monoid into an abelian group. Let M be a commutative monoid. Its Grothendieck group N should have the following universal property: There exists a monoid homomorphism
- i:M→N
such that for any monoid homomorphism
- f:M→A
from the commutative monoid M to an abelian group A, there is a unique group homomorphism
- g:N→A
such that
- f=gi.
In the language of category theory, the functor that sends a commutative monoid M to its Grothendieck group N is left adjoint to the forgetful functor from the category of abelian groups to the category of commutative monoids.
Read more about this topic: Grothendieck Group
Famous quotes containing the words universal and/or property:
“A princely marriage is the brilliant edition of a universal fact, and, as such, it rivets mankind.”
—Walter Bagehot (18261877)
“Thieves respect property. They merely wish the property to become their property that they may more perfectly respect it.”
—Gilbert Keith Chesterton (18741936)