Integral Form For Continuous Functions
Let I denote an interval of the real line of the form or [a, b) with a < b. Let α, β and u be real-valued functions defined on I. Assume that β and u are continuous and that the negative part of α is integrable on every closed and bounded subinterval of I.
- (a) If β is non-negative and if u satisfies the integral inequality
-
- then
- (b) If, in addition, the function α is non-decreasing, then
Remarks:
- There are no assumptions on the signs of the functions α and u.
- Compared to the differential form, differentiability of u is not needed for the integral form.
- For a version of Grönwall's inequality which doesn't need continuity of β and u, see the version in the next section.
Read more about this topic: Gronwall's Inequality
Famous quotes containing the words integral, form, continuous and/or functions:
“... no one who has not been an integral part of a slaveholding community, can have any idea of its abominations.... even were slavery no curse to its victims, the exercise of arbitrary power works such fearful ruin upon the hearts of slaveholders, that I should feel impelled to labor and pray for its overthrow with my last energies and latest breath.”
—Angelina Grimké (18051879)
“Let the same mind be in you that was in Christ Jesus, who, though he was in the form of God, did not regard equality with God as something to be exploited, but emptied himself, taking the form of a slave, being born in human likeness. And being found in human form, he humbled himself and became obedient to the point of death M even death on a cross.”
—Bible: New Testament, Philippians 2:5-8.
“I can never get people to understand that poetry is the expression of excited passion, and that there is no such thing as a life of passion any more than a continuous earthquake, or an eternal fever. Besides, who would ever shave themselves in such a state?”
—George Gordon Noel Byron (17881824)
“Empirical science is apt to cloud the sight, and, by the very knowledge of functions and processes, to bereave the student of the manly contemplation of the whole.”
—Ralph Waldo Emerson (18031882)