General Weak Lensing
In weak lensing by large-scale structure, the thin-lens approximation may break down, and low-density extended structures may not be well approximated by multiple thin-lens planes. In this case, the deflection can be derived by instead assuming that the gravitational potential is slowly varying everywhere (for this reason, this approximation is not valid for strong lensing). This approach assumes the universe is well described by a Newtonian-perturbed FRW metric, but it makes no other assumptions about the distribution of the lensing mass.
As in the thin-lens case, the effect can be written as a mapping from the unlensed angular position to the lensed position . The Jacobian of the transform can be written as an integral over the gravitational potential along the line of sight
where is the comoving distance, are the transverse distances, and
is the lensing kernel, which defines the efficiency of lensing for a distribution of sources .
The Jacobian can be decomposed into convergence and shear terms just as with the thin-lens case, and in the limit of a lens that is both thin and weak, their physical interpretations are the same.
Read more about this topic: Gravitational Lensing Formalism
Famous quotes containing the words general and/or weak:
“Without metaphor the handling of general concepts such as culture and civilization becomes impossible, and that of disease and disorder is the obvious one for the case in point. Is not crisis itself a concept we owe to Hippocrates? In the social and cultural domain no metaphor is more apt than the pathological one.”
—Johan Huizinga (18721945)
“The human face is a weak guarantee; yet it deserves some consideration. And if I had to whip the wicked, I would do so more severely to those who belied and betrayed the promises that nature had implanted on their brows; I would punish malice more harshly when it was hidden under a kindly appearance.”
—Michel de Montaigne (15331592)