Derivation For A Uniform Sphere
The gravitational binding energy of a sphere is found by imagining that it is pulled apart by successively moving spherical shells to infinity, the outermost first, and finding the total energy needed for that.
If we assume a constant density then the masses of a shell and the sphere inside it are:
- and
The required energy for a shell is the negative of the gravitational potential energy:
Integrating over all shells we get:
Remembering that is simply equal to the mass of the whole divided by its volume for objects with uniform density we get:
And finally, plugging this in to our result we get:
Read more about this topic: Gravitational Binding Energy
Famous quotes containing the words uniform and/or sphere:
“Thus for each blunt-faced ignorant one
The great grey rigid uniform combined
Safety with virtue of the sun.
Thus concepts linked like chainmail in the mind.”
—Thom Gunn (b. 1929)
“For my part, I have no hesitation in saying that although the American woman never leaves her domestic sphere and is in some respects very dependent within it, nowhere does she enjoy a higher station . . . if anyone asks me what I think the chief cause of the extraordinary prosperity and growing power of this nation, I should answer that it is due to the superiority of their woman.”
—Alexis de Tocqueville (18051859)