Types of Graphical Models
Generally, probabilistic graphical models use a graph-based representation as the foundation for encoding a complete distribution over a multi-dimensional space and a graph that is a compact or factorized representation of a set of independences that hold in the specific distribution. Two branches of graphical representations of distributions are commonly used, namely, Bayesian networks and Markov networks. Both families encompass the properties of factorization and independences, but they differ in the set of independences they can encode and the factorization of the distribution that they induce.
Read more about this topic: Graphical Model
Famous quotes containing the words types of, types and/or models:
“... there are two types of happiness and I have chosen that of the murderers. For I am happy. There was a time when I thought I had reached the limit of distress. Beyond that limit, there is a sterile and magnificent happiness.”
—Albert Camus (19131960)
“Hes one of those know-it-all types that, if you flatter the wig off him, he chatter like a goony bird at mating time.”
—Michael Blankfort. Lewis Milestone. Johnson (Reginald Gardner)
“Grandparents can be role models about areas that may not be significant to young children directly but that can teach them about patience and courage when we are ill, or handicapped by problems of aging. Our attitudes toward retirement, marriage, recreation, even our feelings about death and dying may make much more of an impression than we realize.”
—Eda Le Shan (20th century)