Graph Isomorphism Problem - State of The Art

State of The Art

The best current theoretical algorithm is due to Eugene Luks (1983), and is based on the earlier work by Luks (1981), Babai & Luks (1982), combined with a subfactorial algorithm due to Zemlyachenko (1982). The algorithm relies on the classification of finite simple groups. Without CFSG, a slightly weaker bound 2O(√n log2 n) was obtained first for strongly regular graphs by László Babai (1980), and then extended to general graphs by Babai & Luks (1982). Improvement of the exponent √n is a major open problem; for strongly regular graphs this was done by Spielman (1996). For hypergraphs of bounded rank, a subexponential upper bound matching the case of graphs, was recently obtained by Babai & Codenotti (2008).

On a side note, the graph isomorphism problem is computationally equivalent to the problem of computing the automorphism group of a graph, and is weaker than the permutation group isomorphism problem, and the permutation group intersection problem. For the latter two problems, Babai, Kantor and Luks (1983) obtained complexity bounds similar to that for the graph isomorphism.

There are several competing practical algorithms for graph isomorphism, due to McKay (1981), Schmidt & Druffel (1976), Ullman (1976), etc. While they seem to perform well on random graphs, a major drawback of these algorithms is their exponential time performance in the worst case.

Read more about this topic:  Graph Isomorphism Problem

Famous quotes containing the words state of, state and/or art:

    Once, when lying in bed with no paper at hand, he began to sketch the idea for a new machine on the back of his wife’s nightgown. He asked her if she knew the figure he was drawing. “Yes,” she answered, “the figure of a fool.”
    —For the State of New Jersey, U.S. public relief program (1935-1943)

    Politics is about putting yourself in a state of grace.
    Paddy Ashdown (b. 1941)

    Classical art, in a word, stands for form; romantic art for content. The romantic artist expects people to ask, What has he got to say? The classical artist expects them to ask, How does he say it?
    —R.G. (Robin George)