Graph Cuts in Computer Vision - Criticism

Criticism

Graph cuts methods have become popular alternatives to the level set-based approaches for optimizing the location of a contour (see for an extensive comparison). However, graph cut approaches have been criticized in the literature for several issues:

  • Metrication artifacts: When an image is represented by a 4-connected lattice, graph cuts methods can exhibit unwanted "blockiness" artifacts. Various methods have been proposed for addressing this issue, such as using additional edges or by formulating the max-flow problem in continuous space.
  • Shrinking bias: Since graph cuts finds a minimum cut, the algorithm can be biased toward producing a small contour. For example, the algorithm is not well-suited for segmentation of thin objects like blood vessels (see for a proposed fix).
  • Multiple labels: Graph cuts is only able to find a global optimum for binary labeling (i.e., two labels) problems, such as foreground/background image segmentation. Extensions have been proposed that can find approximate solutions for multilabel graph cuts problems.
  • Memory: the memory usage of graph cuts increase quickly as the image size increase. As an illustration, the Boykov-Kolmogorov max-flow algorithm v2.2 allocates bytes ( and are respectively the number of nodes and edges in the graph). Nevertheless, some amount of work has been recently done in this direction for reducing the graphs before the maximum-flow computation.

Read more about this topic:  Graph Cuts In Computer Vision