Granular Computing - Types of Granulation

Types of Granulation

As mentioned above, granular computing is not an algorithm or process; there is not a particular method that is called "granular computing". It is rather an approach to looking at data that recognizes how different and interesting regularities in the data can appear at different levels of granularity, much as different features become salient in satellite images of greater or lesser resolution. On a low-resolution satellite image, for example, one might notice interesting cloud patterns representing cyclones or other large-scale weather phenomena, while in a higher-resolution image, one misses these large-scale atmospheric phenomena but instead notices smaller-scale phenomena, such as the interesting pattern that is the streets of Manhattan. The same is generally true of all data: At different resolutions or granularities, different features and relationships emerge. The aim of granular computing is ultimately simply to try to take advantage of this fact in designing more-effective machine-learning and reasoning systems.

There are several types of granularity that are often encountered in data mining and machine learning, and we review them below:

Read more about this topic:  Granular Computing

Famous quotes containing the words types of and/or types:

    ... there are two types of happiness and I have chosen that of the murderers. For I am happy. There was a time when I thought I had reached the limit of distress. Beyond that limit, there is a sterile and magnificent happiness.
    Albert Camus (1913–1960)

    The wider the range of possibilities we offer children, the more intense will be their motivations and the richer their experiences. We must widen the range of topics and goals, the types of situations we offer and their degree of structure, the kinds and combinations of resources and materials, and the possible interactions with things, peers, and adults.
    Loris Malaguzzi (1920–1994)