Grand Potential - Definition

Definition

Grand potential is defined by


\Phi_{G} \ \stackrel{\mathrm{def}}{=}\ U - T S - \mu N

where U is the internal energy, T is the temperature of the system, S is the entropy, μ is the chemical potential, and N is the number of particles in the system.

The change in the grand potential is given by

\begin{align}
d\Phi_{G} & = dU - TdS - SdT - Nd\mu \\
& = - P dV - S dT - N d\mu
\end{align}

where P is pressure and V is volume, using the fundamental thermodynamic relation (combined first and second thermodynamic laws);

When the system is in thermodynamic equilibrium, ΦG is a minimum. This can be seen by considering that dΦG is zero if the volume is fixed and the temperature and chemical potential have stopped evolving.

Read more about this topic:  Grand Potential

Famous quotes containing the word definition:

    Was man made stupid to see his own stupidity?
    Is God by definition indifferent, beyond us all?
    Is the eternal truth man’s fighting soul
    Wherein the Beast ravens in its own avidity?
    Richard Eberhart (b. 1904)

    It’s a rare parent who can see his or her child clearly and objectively. At a school board meeting I attended . . . the only definition of a gifted child on which everyone in the audience could agree was “mine.”
    Jane Adams (20th century)

    Although there is no universal agreement as to a definition of life, its biological manifestations are generally considered to be organization, metabolism, growth, irritability, adaptation, and reproduction.
    The Columbia Encyclopedia, Fifth Edition, the first sentence of the article on “life” (based on wording in the First Edition, 1935)