Grand Potential - Definition

Definition

Grand potential is defined by


\Phi_{G} \ \stackrel{\mathrm{def}}{=}\ U - T S - \mu N

where U is the internal energy, T is the temperature of the system, S is the entropy, μ is the chemical potential, and N is the number of particles in the system.

The change in the grand potential is given by

\begin{align}
d\Phi_{G} & = dU - TdS - SdT - Nd\mu \\
& = - P dV - S dT - N d\mu
\end{align}

where P is pressure and V is volume, using the fundamental thermodynamic relation (combined first and second thermodynamic laws);

When the system is in thermodynamic equilibrium, ΦG is a minimum. This can be seen by considering that dΦG is zero if the volume is fixed and the temperature and chemical potential have stopped evolving.

Read more about this topic:  Grand Potential

Famous quotes containing the word definition:

    According to our social pyramid, all men who feel displaced racially, culturally, and/or because of economic hardships will turn on those whom they feel they can order and humiliate, usually women, children, and animals—just as they have been ordered and humiliated by those privileged few who are in power. However, this definition does not explain why there are privileged men who behave this way toward women.
    Ana Castillo (b. 1953)

    It is very hard to give a just definition of love. The most we can say of it is this: that in the soul, it is a desire to rule; in the spirit, it is a sympathy; and in the body, it is but a hidden and subtle desire to possess—after many mysteries—what one loves.
    François, Duc De La Rochefoucauld (1613–1680)

    Scientific method is the way to truth, but it affords, even in
    principle, no unique definition of truth. Any so-called pragmatic
    definition of truth is doomed to failure equally.
    Willard Van Orman Quine (b. 1908)