Graded Vector Space - Linear Maps

Linear Maps

For general index sets I, a linear map between two I-graded vector spaces f:VW is called a graded linear map if it preserves the grading of homogeneous elements:

for all i in I.

When I is a commutative monoid (such as the natural numbers), then one may more generally define linear maps that are homogeneous of any degree i in I by the property

for all j in I,

where "+" denotes the monoid operation. If moreover I satisfies the cancellation property so that it can be embedded into a commutative group A which it generates (for instance the integers if I is the natural numbers), then one may also define linear maps that are homogeneous of degree i in A by the same property (but now "+" denotes the group operation in A). In particular for i in I a linear map will be homogeneous of degree −i if

for all j in I, while
if ji is not in I.

Just as the set of linear maps from a vector space to itself forms an associative algebra (the algebra of endomorphisms of the vector space), the sets of homogeneous linear maps from a space to itself, either restricting degrees to I or allowing any degrees in the group A, form associative graded algebras over those index sets.

Read more about this topic:  Graded Vector Space

Famous quotes containing the word maps:

    Living in cities is an art, and we need the vocabulary of art, of style, to describe the peculiar relationship between man and material that exists in the continual creative play of urban living. The city as we imagine it, then, soft city of illusion, myth, aspiration, and nightmare, is as real, maybe more real, than the hard city one can locate on maps in statistics, in monographs on urban sociology and demography and architecture.
    Jonathan Raban (b. 1942)