Gorenstein Ring

Gorenstein Ring

In commutative algebra, a Gorenstein local ring is a Noetherian commutative local ring R with finite injective dimension, as an R-module. There are many equivalent conditions, some of them listed below, most dealing with some sort of duality condition.

A Gorenstein commutative ring is a commutative ring such that each localization at a prime ideal is a Gorenstein local ring. The Gorenstein ring concept is a special case of the more general Cohen–Macaulay ring.

The classical definition reads:

A local Cohen–Macaulay ring R is called Gorenstein if there is a maximal R-regular sequence in the maximal ideal generating an irreducible ideal.

For a Noetherian commutative local ring of Krull dimension, the following are equivalent:

  • has finite injective dimension as an -module;
  • has injective dimension as an -module;
  • for and is isomorphic to ;
  • for some ;
  • for all and is isomorphic to ;
  • is an -dimensional Gorenstein ring.

A (not necessarily commutative) ring R is called Gorenstein if R has finite injective dimension both as a left R-module and as a right R-module. If R is a local ring, we say R is a local Gorenstein ring.

Read more about Gorenstein Ring:  Examples, Properties

Famous quotes containing the word ring:

    There is no magic decoding ring that will help us read our young adolescent’s feelings. Rather, what we need to do is hold out our antennae in the hope that we’ll pick up the right signals.
    —The Lions Clubs International and the Quest Nation. The Surprising Years, III, ch.4 (1985)