Representing Integers As Golden Ratio Base Numbers
We can either consider our integer to be the (only) digit of a nonstandard base-φ numeral, and standardize it, or do the following:
1×1 = 1, φ × φ = 1 + φ and 1/φ = −1 + φ. Therefore, we can compute
- (a + bφ) + (c + dφ) = ((a + c) + (b + d)φ),
- (a + bφ) − (c + dφ) = ((a − c) + (b − d)φ)
and
- (a + bφ) × (c + dφ) = ((ac + bd) + (ad + bc + bd)φ).
So, using integer values only, we can add, subtract and multiply numbers of the form (a + bφ), and even represent positive and negative integer powers of φ. (Note that φ−1 = 1/φ.)
(a + bφ) > (c + dφ) if and only if 2(a − c) − (d − b) > (d − b) × √5. If one side is negative, the other positive, the comparison is trivial. Otherwise, square both sides, to get an integer comparison, reversing the comparison direction if both sides were negative. On squaring both sides, the √5 is replaced with the integer 5.
So, using integer values only, we can also compare numbers of the form (a + bφ).
- To convert an integer x to a base-φ number, note that x = (x + 0φ).
- Subtract the highest power of φ, which is still smaller than the number we have, to get our new number, and record a "1" in the appropriate place in the resulting base-φ number.
- Unless our number is 0, go to step 2.
- Finished.
The above procedure will never result in the sequence "11", since 11φ = 100φ, so getting a "11" would mean we missed a "1" prior to the sequence "11".
Start, e. g., with integer=5, with the result so far being ...00000.00000...φ
Highest power of φ ≤ 5 is φ3 = 1 + 2φ ≈ 4.236067977
Subtracting this from 5, we have 5 - (1 + 2φ) = 4 − 2φ ≈ 0.763932023..., the result so far being 1000.00000...φ
Highest power of φ ≤ 4 − 2φ ≈ 0.763932023... is φ−1 = −1 + 1φ ≈ 0.618033989...
Subtracting this from 4 − 2φ ≈ 0.763932023..., we have 4 − 2φ − (−1 + 1φ) = 5 − 3φ ≈ 0.145898034..., the result so far being 1000.10000...φ
Highest power of φ ≤ 5 − 3φ ≈ 0.145898034... is φ−4 = 5 − 3φ ≈ 0.145898034...
Subtracting this from 5 − 3φ ≈ 0.145898034..., we have 5 − 3φ − (5 − 3φ) = 0 + 0φ = 0, with the final result being 1000.1001φ.
Read more about this topic: Golden Ratio Base
Famous quotes containing the words representing, golden, ratio, base and/or numbers:
“There are people who are so presumptuous that they know no other way to praise a greatness that they publicly admire than by representing it as a preliminary stage and bridge leading to themselves.”
—Friedrich Nietzsche (18441900)
“Heaven has a Sea of Glass on which angels go sliding every afternoon. There are many golden streets, but the principal thoroughfares are Amen Street and Hallelujah Avenue, which intersect in front of the Throne. These streets play tunes when walked on, and all shoes have songs in them.”
—For the State of Florida, U.S. public relief program (1935-1943)
“People are lucky and unlucky not according to what they get absolutely, but according to the ratio between what they get and what they have been led to expect.”
—Samuel Butler (18351902)
“Were I as base as is the lowly plain,
And you, my Love, as high as heaven above,
Yet should the thoughts of me, your humble swain,
Ascend to heaven in honour of my love.”
—Joshua Sylvester (15611618)
“Im not even thinking straight any more. Numbers buzz in my head like wasps.”
—Kurt Neumann (19061958)