Golden Ratio Base - Representing Integers As Golden Ratio Base Numbers

Representing Integers As Golden Ratio Base Numbers

We can either consider our integer to be the (only) digit of a nonstandard base-φ numeral, and standardize it, or do the following:

1×1 = 1, φ × φ = 1 + φ and 1/φ = −1 + φ. Therefore, we can compute

(a + bφ) + (c + dφ) = ((a + c) + (b + d)φ),
(a + bφ) − (c + dφ) = ((ac) + (bd)φ)

and

(a + bφ) × (c + dφ) = ((ac + bd) + (ad + bc + bd)φ).

So, using integer values only, we can add, subtract and multiply numbers of the form (a + bφ), and even represent positive and negative integer powers of φ. (Note that φ−1 = 1/φ.)

(a + bφ) > (c + dφ) if and only if 2(ac) − (db) > (db) × √5. If one side is negative, the other positive, the comparison is trivial. Otherwise, square both sides, to get an integer comparison, reversing the comparison direction if both sides were negative. On squaring both sides, the √5 is replaced with the integer 5.

So, using integer values only, we can also compare numbers of the form (a + bφ).

  1. To convert an integer x to a base-φ number, note that x = (x + 0φ).
  2. Subtract the highest power of φ, which is still smaller than the number we have, to get our new number, and record a "1" in the appropriate place in the resulting base-φ number.
  3. Unless our number is 0, go to step 2.
  4. Finished.

The above procedure will never result in the sequence "11", since 11φ = 100φ, so getting a "11" would mean we missed a "1" prior to the sequence "11".

Start, e. g., with integer=5, with the result so far being ...00000.00000...φ

Highest power of φ ≤ 5 is φ3 = 1 + 2φ ≈ 4.236067977

Subtracting this from 5, we have 5 - (1 + 2φ) = 4 − 2φ ≈ 0.763932023..., the result so far being 1000.00000...φ

Highest power of φ ≤ 4 − 2φ ≈ 0.763932023... is φ−1 = −1 + 1φ ≈ 0.618033989...

Subtracting this from 4 − 2φ ≈ 0.763932023..., we have 4 − 2φ − (−1 + 1φ) = 5 − 3φ ≈ 0.145898034..., the result so far being 1000.10000...φ

Highest power of φ ≤ 5 − 3φ ≈ 0.145898034... is φ−4 = 5 − 3φ ≈ 0.145898034...

Subtracting this from 5 − 3φ ≈ 0.145898034..., we have 5 − 3φ − (5 − 3φ) = 0 + 0φ = 0, with the final result being 1000.1001φ.

Read more about this topic:  Golden Ratio Base

Famous quotes containing the words representing, golden, ratio, base and/or numbers:

    He who has learned what is commonly considered the whole art of painting, that is, the art of representing any natural object faithfully, has as yet only learned the language by which his thoughts are to be expressed.
    John Ruskin (1819–1900)

    Fondnesse it were for any being free,
    To covet fetters, though they golden bee.
    Edmund Spenser (1552?–1599)

    People are lucky and unlucky not according to what they get absolutely, but according to the ratio between what they get and what they have been led to expect.
    Samuel Butler (1835–1902)

    I am sure my bones would not rest in an English grave, or my clay mix with the earth of that country. I believe the thought would drive me mad on my death-bed could I suppose that any of my friends would be base enough to convey my carcass back to her soil. I would not even feed her worms if I could help it.
    George Gordon Noel Byron (1788–1824)

    I had a feeling that out there, there were very poor people who didn’t have enough to eat. But they wore wonderfully colored rags and did musical numbers up and down the streets together.
    Jill Robinson (b. 1936)