Golden Ratio Base - Representing Integers As Golden Ratio Base Numbers

Representing Integers As Golden Ratio Base Numbers

We can either consider our integer to be the (only) digit of a nonstandard base-φ numeral, and standardize it, or do the following:

1×1 = 1, φ × φ = 1 + φ and 1/φ = −1 + φ. Therefore, we can compute

(a + bφ) + (c + dφ) = ((a + c) + (b + d)φ),
(a + bφ) − (c + dφ) = ((ac) + (bd)φ)

and

(a + bφ) × (c + dφ) = ((ac + bd) + (ad + bc + bd)φ).

So, using integer values only, we can add, subtract and multiply numbers of the form (a + bφ), and even represent positive and negative integer powers of φ. (Note that φ−1 = 1/φ.)

(a + bφ) > (c + dφ) if and only if 2(ac) − (db) > (db) × √5. If one side is negative, the other positive, the comparison is trivial. Otherwise, square both sides, to get an integer comparison, reversing the comparison direction if both sides were negative. On squaring both sides, the √5 is replaced with the integer 5.

So, using integer values only, we can also compare numbers of the form (a + bφ).

  1. To convert an integer x to a base-φ number, note that x = (x + 0φ).
  2. Subtract the highest power of φ, which is still smaller than the number we have, to get our new number, and record a "1" in the appropriate place in the resulting base-φ number.
  3. Unless our number is 0, go to step 2.
  4. Finished.

The above procedure will never result in the sequence "11", since 11φ = 100φ, so getting a "11" would mean we missed a "1" prior to the sequence "11".

Start, e. g., with integer=5, with the result so far being ...00000.00000...φ

Highest power of φ ≤ 5 is φ3 = 1 + 2φ ≈ 4.236067977

Subtracting this from 5, we have 5 - (1 + 2φ) = 4 − 2φ ≈ 0.763932023..., the result so far being 1000.00000...φ

Highest power of φ ≤ 4 − 2φ ≈ 0.763932023... is φ−1 = −1 + 1φ ≈ 0.618033989...

Subtracting this from 4 − 2φ ≈ 0.763932023..., we have 4 − 2φ − (−1 + 1φ) = 5 − 3φ ≈ 0.145898034..., the result so far being 1000.10000...φ

Highest power of φ ≤ 5 − 3φ ≈ 0.145898034... is φ−4 = 5 − 3φ ≈ 0.145898034...

Subtracting this from 5 − 3φ ≈ 0.145898034..., we have 5 − 3φ − (5 − 3φ) = 0 + 0φ = 0, with the final result being 1000.1001φ.

Read more about this topic:  Golden Ratio Base

Famous quotes containing the words representing, golden, ratio, base and/or numbers:

    ... today we round out the first century of a professed republic,—with woman figuratively representing freedom—and yet all free, save woman.
    Phoebe W. Couzins (1845–1913)

    His golden locks time hath to silver turned;
    O time too swift, O swiftness never ceasing!
    His youth ‘gainst time and age hath ever spurned,
    But spurned in vain; youth waneth by increasing.
    Beauty, strength, youth are flowers but fading seen;
    Duty, faith, love are roots, and ever green.
    George Peele (1559–1596)

    Personal rights, universally the same, demand a government framed on the ratio of the census: property demands a government framed on the ratio of owners and of owning.
    Ralph Waldo Emerson (1803–1882)

    What I often forget about students, especially undergraduates, is that surface appearances are misleading. Most of them are at base as conventional as Presbyterian deacons.
    Muriel Beadle (b. 1915)

    ... there are persons who seem to have overcome obstacles and by character and perseverance to have risen to the top. But we have no record of the numbers of able persons who fall by the wayside, persons who, with enough encouragement and opportunity, might make great contributions.
    Mary Barnett Gilson (1877–?)