Gluon - Confinement


Since gluons themselves carry color charge, they participate in strong interactions. These gluon-gluon interactions constrain color fields to string-like objects called "flux tubes", which exert constant force when stretched. Due to this force, quarks are confined within composite particles called hadrons. This effectively limits the range of the strong interaction to 10−15 meters, roughly the size of an atomic nucleus. Beyond a certain distance, the energy of the flux tube binding two quarks increases linearly. At a large enough distance, it becomes energetically more favorable to pull a quark-antiquark pair out of the vacuum rather than increase the length of the flux tube.

Gluons also share this property of being confined within hadrons. One consequence is that gluons are not directly involved in the nuclear forces between hadrons. The force mediators for these are other hadrons called mesons.

Although in the normal phase of QCD single gluons may not travel freely, it is predicted that there exist hadrons that are formed entirely of gluons — called glueballs. There are also conjectures about other exotic hadrons in which real gluons (as opposed to virtual ones found in ordinary hadrons) would be primary constituents. Beyond the normal phase of QCD (at extreme temperatures and pressures), quark gluon plasma forms. In such a plasma there are no hadrons; quarks and gluons become free particles.

Read more about this topic:  Gluon

Famous quotes containing the word confinement:

    We’re all of us sentenced to solitary confinement inside our own skins, for life!
    Tennessee Williams (1914–1983)