Definition of A Field
A field is a commutative ring (F,+,*) in which 0≠1 and every nonzero element has a multiplicative inverse. In a field we thus can perform the operations addition, subtraction, multiplication, and division.
The non-zero elements of a field F form an abelian group under multiplication; this group is typically denoted by F×;
The ring of polynomials in the variable x with coefficients in F is denoted by F.
Read more about this topic: Glossary Of Field Theory
Famous quotes containing the words definition of a, definition of, definition and/or field:
“Definition of a classic: a book everyone is assumed to have read and often thinks they have.”
—Alan Bennett (b. 1934)
“It is very hard to give a just definition of love. The most we can say of it is this: that in the soul, it is a desire to rule; in the spirit, it is a sympathy; and in the body, it is but a hidden and subtle desire to possessafter many mysterieswhat one loves.”
—François, Duc De La Rochefoucauld (16131680)
“The man who knows governments most completely is he who troubles himself least about a definition which shall give their essence. Enjoying an intimate acquaintance with all their particularities in turn, he would naturally regard an abstract conception in which these were unified as a thing more misleading than enlightening.”
—William James (18421910)
“The snow had begun in the gloaming,
And busily all the night
Had been heaping field and highway
With a silence deep and white.”
—James Russell Lowell (18191891)