Glossary of Field Theory - Definition of A Field

Definition of A Field

A field is a commutative ring (F,+,*) in which 0≠1 and every nonzero element has a multiplicative inverse. In a field we thus can perform the operations addition, subtraction, multiplication, and division.

The non-zero elements of a field F form an abelian group under multiplication; this group is typically denoted by F×;

The ring of polynomials in the variable x with coefficients in F is denoted by F.

Read more about this topic:  Glossary Of Field Theory

Famous quotes containing the words definition of a, definition of, definition and/or field:

    Definition of a classic: a book everyone is assumed to have read and often thinks they have.
    Alan Bennett (b. 1934)

    It is very hard to give a just definition of love. The most we can say of it is this: that in the soul, it is a desire to rule; in the spirit, it is a sympathy; and in the body, it is but a hidden and subtle desire to possess—after many mysteries—what one loves.
    François, Duc De La Rochefoucauld (1613–1680)

    The man who knows governments most completely is he who troubles himself least about a definition which shall give their essence. Enjoying an intimate acquaintance with all their particularities in turn, he would naturally regard an abstract conception in which these were unified as a thing more misleading than enlightening.
    William James (1842–1910)

    The snow had begun in the gloaming,
    And busily all the night
    Had been heaping field and highway
    With a silence deep and white.
    James Russell Lowell (1819–1891)