Glossary of Field Theory - Definition of A Field

Definition of A Field

A field is a commutative ring (F,+,*) in which 0≠1 and every nonzero element has a multiplicative inverse. In a field we thus can perform the operations addition, subtraction, multiplication, and division.

The non-zero elements of a field F form an abelian group under multiplication; this group is typically denoted by F×;

The ring of polynomials in the variable x with coefficients in F is denoted by F.

Read more about this topic:  Glossary Of Field Theory

Famous quotes containing the words definition of a, definition of, definition and/or field:

    Definition of a classic: a book everyone is assumed to have read and often thinks they have.
    Alan Bennett (b. 1934)

    One definition of man is “an intelligence served by organs.”
    Ralph Waldo Emerson (1803–1882)

    I’m beginning to think that the proper definition of “Man” is “an animal that writes letters.”
    Lewis Carroll [Charles Lutwidge Dodgson] (1832–1898)

    The planter, who is Man sent out into the field to gather food, is seldom cheered by any idea of the true dignity of his ministry. He sees his bushel and his cart, and nothing beyond, and sinks into the farmer, instead of Man on the farm.
    Ralph Waldo Emerson (1803–1882)