Glide Reflection

In geometry, a glide reflection is a type of isometry of the Euclidean plane: the combination of a reflection in a line and a translation along that line. Reversing the order of combining gives the same result. Depending on context, we may consider a reflection a special case, where the translation vector is the zero vector.

The coirect isometries in 2D.

For example, there is an isometry consisting of the reflection on the x-axis, followed by translation of one unit parallel to it. In coordinates, it takes

(x, y) to (x + 1, −y).

It fixes a system of parallel lines.

The isometry group generated by just a glide reflection is an infinite cyclic group.

Combining two equal glide reflections gives a pure translation with a translation vector that is twice that of the glide reflection, so the even powers of the glide reflection form a translation group.

In the case of glide reflection symmetry, the symmetry group of an object contains a glide reflection, and hence the group generated by it. If that is all it contains, this type is frieze group nr. 2.

Example pattern with this symmetry group:

+ + +++ +++ +++ +

Frieze group nr. 6 (glide-reflections, translations and rotations) is generated by a glide reflection and a rotation about a point on the line of reflection. It is isomorphic to a semi-direct product of Z and C2.

Example pattern with this symmetry group:

+ + + + + + + + +

For any symmetry group containing some glide reflection symmetry, the translation vector of any glide reflection is one half of an element of the translation group. If the translation vector of a glide reflection is itself an element of the translation group, then the corresponding glide reflection symmetry reduces to a combination of reflection symmetry and translational symmetry.

Glide reflection symmetry with respect to two parallel lines with the same translation implies that there is also translational symmetry in the direction perpendicular to these lines, with a translation distance which is twice the distance between glide reflection lines. This corresponds to wallpaper group pg; with additional symmetry it occurs also in pmg, pgg and p4g.

If there are also true reflection lines in the same direction then they are evenly spaced between the glide reflection lines. A glide reflection line parallel to a true reflection line already implies this situation. This corresponds to wallpaper group cm. The translational symmetry is given by oblique translation vectors from one point on a true reflection line to two points on the next, supporting a rhombus with the true reflection line as one of the diagonals. With additional symmetry it occurs also in cmm, p3m1, p31m, p4m and p6m.

In 3D the glide reflection is called a glide plane. It is a reflection in a plane combined with a translation parallel to the plane.

Glide symmetry can be observed in nature among certain fossils of the Ediacara biota; the machaeridians; and certain palaeoscolecid worms.

Read more about Glide Reflection:  Glide Reflection in Cellular Automata

Famous quotes containing the words glide and/or reflection:

    We perceive no charms that are not sharpened, puffed out, and inflated by artifice. Those which glide along naturally and simply easily escape a sight so gross as ours.
    Michel de Montaigne (1533–1592)

    What chiefly distinguishes the daily press of the United States from the press of all other countries is not its lack of truthfulness or even its lack of dignity and honor, for these deficiencies are common to the newspapers everywhere, but its incurable fear of ideas, its constant effort to evade the discussion of fundamentals by translating all issues into a few elemental fears, its incessant reduction of all reflection to mere emotion. It is, in the true sense, never well-informed.
    —H.L. (Henry Lewis)