Statement of Theorem
We state the theorem first for the special case when the underlying stochastic process is a Wiener process. This special case is sufficient for risk-neutral pricing in the Black-Scholes model and in many other models (e.g. all continuous models).
Let be a Wiener process on the Wiener probability space . Let be a measurable process adapted to the natural filtration of the Wiener process .
Given an adapted process with define
where is the stochastic exponential (or Doléans exponential) of X with respect to W, i.e.
Thus is a strictly positive local martingale, and a probability measure Q can be defined on such that we have Radon–Nikodym derivative
Then for each t the measure Q restricted to the unaugmented sigma fields is equivalent to P restricted to
Furthermore if Y is a local martingale under P then the process
is a Q local martingale on the filtered probability space .
Read more about this topic: Girsanov Theorem
Famous quotes containing the words statement of, statement and/or theorem:
“One is apt to be discouraged by the frequency with which Mr. Hardy has persuaded himself that a macabre subject is a poem in itself; that, if there be enough of death and the tomb in ones theme, it needs no translation into art, the bold statement of it being sufficient.”
—Rebecca West (18921983)
“Eloquence must be grounded on the plainest narrative. Afterwards, it may warm itself until it exhales symbols of every kind and color, speaks only through the most poetic forms; but first and last, it must still be at bottom a biblical statement of fact.”
—Ralph Waldo Emerson (18031882)
“To insure the adoration of a theorem for any length of time, faith is not enough, a police force is needed as well.”
—Albert Camus (19131960)