Geometric Group Theory - History

History

Geometric group theory grew out of combinatorial group theory that largely studied properties of discrete groups via analyzing group presentations, that describe groups as quotients of free groups; this field was first systematically studied by Walther von Dyck, student of Felix Klein, in the early 1880s, while an early form is found in the 1856 Icosian Calculus of William Rowan Hamilton, where he studied the icosahedral symmetry group via the edge graph of the dodecahedron. Currently combinatorial group theory as an area is largely subsumed by geometric group theory. Moreover, the term "geometric group theory" came to often include studying discrete groups using probabilistic, measure-theoretic, arithmetic, analytic and other approaches that lie outside of the traditional combinatorial group theory arsenal.

In the first half of the 20th century, pioneering work of Dehn, Nielsen, Reidemeister and Schreier, Whitehead, van Kampen, amongst others, introduced some topological and geometric ideas into the study of discrete groups. Other precursors of geometric group theory include small cancellation theory and Bass–Serre theory. Small cancellation theory was introduced by Martin Grindlinger in 1960s and further developed by Roger Lyndon and Paul Schupp. It studies van Kampen diagrams, corresponding to finite group presentations, via combinatorial curvature conditions and derives algebraic and algorithmic properties of groups from such analysis. Bass–Serre theory, introduced in the 1977 book of Serre, derives structural algebraic information about groups by studying group actions on simplicial trees. External precursors of geometric group theory include the study of lattices in Lie Groups, especially Mostow rigidity theorem, the study of Kleinian groups, and the progress achieved in low-dimensional topology and hyperbolic geometry in 1970s and early 1980s, spurred, in particular, by Thurston's Geometrization program.

The emergence of geometric group theory as a distinct area of mathematics is usually traced to late 1980s and early 1990s. It was spurred by the 1987 monograph of Gromov "Hyperbolic groups" that introduced the notion of a hyperbolic group (also known as word-hyperbolic or Gromov-hyperbolic or negatively curved group), which captures the idea of a finitely generated group having large-scale negative curvature, and by his subsequent monograph Asymptotic Invariants of Inifinite Groups, that outlined Gromov's program of understanding discrete groups up to quasi-isometry. The work of Gromov had a transformative effect on the study of discrete groups and the phrase "geometric group theory" started appearing soon afterwards. (see, e.g.,).

Read more about this topic:  Geometric Group Theory

Famous quotes containing the word history:

    For a transitory enchanted moment man must have held his breath in the presence of this continent, compelled into an aesthetic contemplation he neither understood nor desired, face to face for the last time in history with something commensurate to his capacity for wonder.
    F. Scott Fitzgerald (1896–1940)

    The thing that struck me forcefully was the feeling of great age about the place. Standing on that old parade ground, which is now a cricket field, I could feel the dead generations crowding me. Here was the oldest settlement of freedmen in the Western world, no doubt. Men who had thrown off the bands of slavery by their own courage and ingenuity. The courage and daring of the Maroons strike like a purple beam across the history of Jamaica.
    Zora Neale Hurston (1891–1960)

    Jesus Christ belonged to the true race of the prophets. He saw with an open eye the mystery of the soul. Drawn by its severe harmony, ravished with its beauty, he lived in it, and had his being there. Alone in all history he estimated the greatness of man.
    Ralph Waldo Emerson (1803–1882)