Relation To Differential Forms
In a local coordinate system (x1, ..., xn), the coordinate differentials dx1, ..., dxn form a basic set of one-forms within the coordinate chart. Given a multi-index i1, ..., ik with 1 ≤ ip ≤ n for 1 ≤ p ≤ k, we can define a k-form
We can alternatively introduce a k-grade multivector A as
and a measure
Apart from a subtle difference in meaning for the exterior product with respect to differential forms versus the exterior product with respect to vectors, we see the correspondences of the differential form
its derivative
and its Hodge dual
embed the theory of differential forms within geometric calculus.
Read more about this topic: Geometric Calculus
Famous quotes containing the words relation to, relation, differential and/or forms:
“Unaware of the absurdity of it, we introduce our own petty household rules into the economy of the universe for which the life of generations, peoples, of entire planets, has no importance in relation to the general development.”
—Alexander Herzen (18121870)
“There is a constant in the average American imagination and taste, for which the past must be preserved and celebrated in full-scale authentic copy; a philosophy of immortality as duplication. It dominates the relation with the self, with the past, not infrequently with the present, always with History and, even, with the European tradition.”
—Umberto Eco (b. 1932)
“But how is one to make a scientist understand that there is something unalterably deranged about differential calculus, quantum theory, or the obscene and so inanely liturgical ordeals of the precession of the equinoxes.”
—Antonin Artaud (18961948)
“Year chases year, decay pursues decay,
Still drops some joy from withring life away;
New forms arise, and diffrent views engage,”
—Samuel Johnson (17091784)