Geology of Venus - Knowledge of The Surface of Venus Before Magellan

Knowledge of The Surface of Venus Before Magellan

After the Moon, Venus was the second object in the solar system to be explored by radar from the Earth. The first studies were carried out in 1961 at NASA's Goldstone Observatory, part of the Deep Space Network. At successive inferior conjunctions, Venus was observed both by Goldstone and the National Astronomy and Ionosphere Center in Arecibo. These studies confirmed earlier measurements during transits of the meridian, which had revealed in 1963 that the rotation of Venus was retrograde (it rotates in the opposite direction to that in which it orbits the Sun). The radar observations also allowed astronomers to determine that the rotation period of Venus was 243.1 days, and that its axis of rotation was almost perpendicular to its orbital plane. It was also established that the radius of the planet was 6,052 kilometres (3,761 mi), some 70 kilometres (43 mi) less than the best previous figure obtained with terrestrial telescopes.

Interest in the geological characteristics of Venus was stimulated by the refinement of imaging techniques between 1970 and 1985. Early radar observations suggested merely that the surface of Venus was more compacted than the dusty surface of the Moon. The first radar images taken from the Earth showed very bright (radar-reflective) highlands, which were christened Alpha Regio, Beta Regio, and Maxwell Montes. Improvements in radar techniques later resulted in an image resolution of 1–2 kilometres.

Since the beginning of the age of space exploration, Venus has been considered as a site for future landings. Launch windows occur every 19 months, and from 1962 to 1985 every window was used to launch reconnaissance probes.

In 1962, Mariner 2 flew over Venus, becoming the first man-made object to visit another planet. In 1965, Venera 3 became the first space probe to actually land on another world, although it was a crash-landing. In 1967, Venera 4 became the first probe to send data from the interior of Venus's atmosphere, while Mariner 5 measured the strength of Venus's magnetic field at the same time. Finally, in 1970, Venera 7 made the first controlled landing on Venus. In 1974, Mariner 10 swung by Venus on its way to Mercury and took ultraviolet photographs of the clouds, revealing extraordinarily high wind speeds in the Venusian atmosphere.

In 1975, Venera 9 transmitted the first images of the surface of Venus and made gamma ray observations of rocks at the landing site. Later in that same year, Venera 10 sent further images of the surface.

In 1978, the Pioneer 12 probe (also known as Pioneer Venus 1 or Pioneer Venus Orbiter) circled Venus and provided data for the first altimetry and gravity maps of the planet between 63 and 78 degrees of latitude. The altimetry data had an accuracy of 150 kilometers.

That same year, Pioneer Venus 2 launched four probes into Venus's atmosphere which determined, when combined with data from prior missions, that the surface temperature of the planet was approximately 460°C (860°F), and that the atmospheric pressure at the surface was 90 times that of Earth's, confirming earlier radar observations.

In 1982, the Soviet Venera 13 sent the first colour image of Venus's surface and analysed the X-ray fluorescence of an excavated soil sample. The probe operated for a record 127 minutes on the planet's hostile surface. Also in 1982, the Venera 14 lander detected possible seismic activity in the planet's crust.

In 1983, Venera 15 and 16 acquired more precise radar images and altimetry data for the northern latitudes of the planet. This was the first use of synthetic aperture radar on Venus. The images had 1–2 kilometre (0.6–1.2 mile) resolution. The altimetry data obtained by the Venera missions had a resolution four times better than Pioneer's. Venera 15 and 16 returned images of far higher quality than earth-based radar images, showing relief and texture absent from range-doppler imaging. From a highly eccentric polar orbit, the spacecraft recorded survey strips from the north pole down to 30 degrees latitude during a 16-minute pass. The remainder of the 24-hour orbit permitted the transmission of 8 megabytes of information. Venus rotates 1.48 degrees every 24 hours, allowing the entire polar cap to be scanned during the mission, from November 11, 1983 to July 10, 1984. This collection of radio holograms was processed into image strips and maps by SIMD math co-processors on a computer at the Institute of Radio Engineering and Electronics in Moscow.

Most of the basic geomorphology of Venus was established based on data from Venera 15 and 16. Soviet geologists discovered that many objects previously identified as meteor craters were actually unusual volcanic features. The features of coronas, arachnoids, tessera and genuine meteorite craters were identified for the first time. No evidence of plate tectonics was seen, and Soviet scientists argued with Americans about this until Magellan verified their theory, that the entire planet was missing any features indicating plate boundaries. The rarity of meteorite craters showed that the surface of Venus was surprisingly young, only about 100 million years old. This suggested intense volcanic activity and resurfacing.

In 1985, during the euphoria caused by the return of Halley's comet, the Soviet Union launched two Vega probes to Venus. Vega 1 and 2 each sent an instrumented helium balloon to a height of 50 kilometres (31 mi) above the surface, allowing scientists to study the dynamics of the most active part of Venus's atmosphere.

Read more about this topic:  Geology Of Venus

Famous quotes containing the words knowledge of the, knowledge of, knowledge, surface and/or venus:

    All the names of good and evil are parables: they do not declare, but only hint. Whoever among you seeks knowledge of them is a fool!
    Friedrich Nietzsche (1844–1900)

    The ability to think straight, some knowledge of the past, some vision of the future, some skill to do useful service, some urge to fit that service into the well-being of the community,—these are the most vital things education must try to produce.
    Virginia Crocheron Gildersleeve (1877–1965)

    The mind
    Is so hospitable, taking in everything
    Like boarders, and you don’t see until
    It’s all over how little there was to learn
    Once the stench of knowledge has dissipated,
    John Ashbery (b. 1927)

    Night City was like a deranged experiment in Social Darwinism, designed by a bored researcher who kept one thumb permanently on the fast-forward button. Stop hustling and you sank without a trace, but move a little too swiftly and you’d break the fragile surface tension of the black market; either way, you were gone ... though heart or lungs or kidneys might survive in the service of some stranger with New Yen for the clinic tanks.
    William Gibson (b. 1948)

    Knaves and fools
    have done you impious wrong,
    Venus, for venery stands for impurity
    and Venus as desire
    is venereous, lascivious.
    Hilda Doolittle (1886–1961)